Home
Class 12
MATHS
The value of log(3) e- log(9) e + log(27...

The value of `log_(3) e- log_(9) e + log_(27) e- log_(81) e+…infty` is

A

`log_(2)3`

B

`log_(3)2`

C

`log_(10)e`

D

`log_(e)2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( \log_{3} e - \log_{9} e + \log_{27} e - \log_{81} e + \ldots \) up to infinity, we can follow these steps: ### Step 1: Rewrite the logarithms We start by rewriting the logarithms in terms of a common base. We know that \( \log_{a^b} c = \frac{1}{b} \log_{a} c \). - \( \log_{9} e = \log_{3^2} e = \frac{1}{2} \log_{3} e \) - \( \log_{27} e = \log_{3^3} e = \frac{1}{3} \log_{3} e \) - \( \log_{81} e = \log_{3^4} e = \frac{1}{4} \log_{3} e \) Thus, we can rewrite the series as: \[ \log_{3} e - \frac{1}{2} \log_{3} e + \frac{1}{3} \log_{3} e - \frac{1}{4} \log_{3} e + \ldots \] ### Step 2: Factor out \( \log_{3} e \) Now, we can factor out \( \log_{3} e \) from the series: \[ \log_{3} e \left( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \right) \] ### Step 3: Identify the remaining series The remaining series \( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots \) is known as the alternating harmonic series, which converges to \( \ln(2) \). ### Step 4: Combine the results Thus, we have: \[ \log_{3} e \cdot \ln(2) \] ### Step 5: Use the change of base formula We can use the change of base formula for logarithms: \[ \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \] Applying this, we get: \[ \log_{3} e = \frac{\ln(e)}{\ln(3)} = \frac{1}{\ln(3)} \] ### Step 6: Substitute back into the equation Now substituting this back into our expression: \[ \log_{3} e \cdot \ln(2) = \frac{1}{\ln(3)} \cdot \ln(2) \] ### Step 7: Final result Thus, we can write: \[ \frac{\ln(2)}{\ln(3)} = \log_{3} 2 \] ### Conclusion The value of the original series is: \[ \log_{3} 2 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Value of [log_(e^3)5^8 - log_(e^3)2^8] equals to

The nth term of log_(e)2 is

The value of e^("log"_(e) x+ "log"_(sqrt(e)) x+ "log"_(root(3)(e)) x + …. + "log"_(root(10)(e))x), is

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The value of (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b)) is

The value of lim_(x to oo ) (log_(e)(log_(e)x))/(e^(sqrt(x))) is _________. (a) π/ 2 (b)0 (c)-π (d)π

The 3^(rd) term of log_(e) 2 is

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

The number of real solution(s) of the equation 9^(log_(3)(log_(e )x))=log_(e )x-(log_(e )x)^(2)+1 is equal to

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The sum of the series 1+(1+a)/(2!)+(1+a+a^(2))/(3!)+(1+a+a^(2)+a^(3...

    Text Solution

    |

  2. The sum of series Sigma(n=1)^(oo) (2n)/(2n+1)! is

    Text Solution

    |

  3. The value of log(3) e- log(9) e + log(27) e- log(81) e+…infty is

    Text Solution

    |

  4. Prove that (4)/(1!) + (11)/(21) + (22)/(3!) + (37)/(4!) + (56)/(5!) +...

    Text Solution

    |

  5. The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!...

    Text Solution

    |

  6. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  7. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  8. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  9. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  10. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  11. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  12. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  13. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  14. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  15. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  16. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  17. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  18. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  19. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  20. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |