Home
Class 12
MATHS
The coefficient of x^n in the expansion ...

The coefficient of x^n in the expansion of `(1+(x^(2))/(2!)+(x^(4))/(4!)..)^(2)` when n is odd

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \[ \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \right)^2 \] when \( n \) is odd, we can follow these steps: ### Step 1: Recognize the series inside the parentheses The series \( 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \) can be recognized as the Taylor series expansion of \( \cosh(x) \): \[ \cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \] Thus, we can rewrite the expression as: \[ \left(\cosh(\sqrt{x})\right)^2 \] ### Step 2: Use the identity for hyperbolic functions We know that: \[ \cosh^2(x) = \frac{1 + \cosh(2x)}{2} \] Applying this identity, we have: \[ \left(\cosh(\sqrt{x})\right)^2 = \frac{1 + \cosh(2\sqrt{x})}{2} \] ### Step 3: Expand the hyperbolic cosine Now we need to expand \( \cosh(2\sqrt{x}) \): \[ \cosh(2\sqrt{x}) = \sum_{k=0}^{\infty} \frac{(2\sqrt{x})^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{4^k x^k}{(2k)!} \] ### Step 4: Substitute back into the expression Substituting back into our expression gives: \[ \frac{1 + \sum_{k=0}^{\infty} \frac{4^k x^k}{(2k)!}}{2} = \frac{1}{2} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{4^k x^k}{(2k)!} \] ### Step 5: Identify the coefficient of \( x^n \) To find the coefficient of \( x^n \) when \( n \) is odd, we note that the series only contains even powers of \( x \) from the \( \cosh \) expansion. Therefore, the coefficient of \( x^n \) in \( \cosh(2\sqrt{x}) \) is zero for all odd \( n \). ### Conclusion Thus, the coefficient of \( x^n \) in the expansion when \( n \) is odd is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!)+…)^(2) When n is odd is

The coefficient of x^(4) in the expansion of (1+x+x^(2))^(6) is

The coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n

The coefficient of x^4 in the expansion of (1+x-2x^2)^7 is

The coefficient of x^n in the expansion of (1+x)(1-x)^n is

Coefficient of x^(n) in the expansion of ((1+x)^(n))/(1-x)

The coefficient of x^4 in the expansion of (1+x-2x^2)^7 is :

The coefficient of x^(n) in the expansion of (1+x)(1-x)^(n) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is

The coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The value of log(3) e- log(9) e + log(27) e- log(81) e+…infty is

    Text Solution

    |

  2. Prove that (4)/(1!) + (11)/(21) + (22)/(3!) + (37)/(4!) + (56)/(5!) +...

    Text Solution

    |

  3. The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!...

    Text Solution

    |

  4. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  5. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  6. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  7. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  8. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  9. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  10. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  11. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  12. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  13. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  14. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  15. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  16. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  17. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  18. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  19. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  20. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |