Home
Class 12
MATHS
The coefficent of x^(n) in the expansion...

The coefficent of `x^(n)` in the expansion of `(1+(x^(2))/(2!)+(x^(4))/(4!)+…)^(2)`
When n is odd is

A

`(2^(n))/(n!)`

B

`(2^(n))/(2n!)`

C

0

D

`(2^(2x))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the expansion of \[ \left(1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \right)^2 \] when \( n \) is odd, we will follow these steps: ### Step 1: Recognize the series The series \( 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \ldots \) is the Taylor series expansion for \( \cosh(x) \). \[ \cosh(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \] Thus, we can rewrite our expression as: \[ \left( \cosh(\sqrt{x}) \right)^2 \] ### Step 2: Use the identity of hyperbolic functions Using the identity for \( \cosh(x) \): \[ \cosh(x) = \frac{e^x + e^{-x}}{2} \] We have: \[ \cosh(\sqrt{x}) = \frac{e^{\sqrt{x}} + e^{-\sqrt{x}}}{2} \] Squaring this gives: \[ \left( \cosh(\sqrt{x}) \right)^2 = \frac{(e^{\sqrt{x}} + e^{-\sqrt{x}})^2}{4} = \frac{e^{2\sqrt{x}} + 2 + e^{-2\sqrt{x}}}{4} \] ### Step 3: Expand the expression Now we need to expand \( e^{2\sqrt{x}} \) and \( e^{-2\sqrt{x}} \): \[ e^{2\sqrt{x}} = \sum_{k=0}^{\infty} \frac{(2\sqrt{x})^k}{k!} = \sum_{k=0}^{\infty} \frac{2^k x^{k/2}}{k!} \] \[ e^{-2\sqrt{x}} = \sum_{k=0}^{\infty} \frac{(-2\sqrt{x})^k}{k!} = \sum_{k=0}^{\infty} \frac{(-2)^k x^{k/2}}{k!} \] ### Step 4: Combine the expansions Combining these, we get: \[ e^{2\sqrt{x}} + e^{-2\sqrt{x}} = \sum_{k=0}^{\infty} \left( \frac{2^k + (-2)^k}{k!} \right) x^{k/2} \] ### Step 5: Find the coefficient of \( x^n \) Now, we need to find the coefficient of \( x^n \) in the expression: \[ \frac{1}{4} \left( e^{2\sqrt{x}} + e^{-2\sqrt{x}} + 2 \right) \] Since \( n \) is odd, the terms \( 2^k + (-2)^k \) will cancel out for odd \( k \), leading to: \[ \frac{1}{4} \cdot 0 = 0 \] ### Conclusion Thus, the coefficient of \( x^n \) in the expansion when \( n \) is odd is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!)..)^(2) when n is odd

The coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n

The coefficient of x^(n) in the expansion of ((1 + x)/(1-x))^(2), is

The coefficient of x^(n) in the expansion of ((1+x)^(2))/((1 - x)^(3)) , is

The coefficient of x^4 in the expansion of (1+x+x^2+x^3)^n is

The greatest coefficient in the expansion of (1+x)^(2n) is

If 'n' is a positive integer then prove that the coefficient fo x^(m) in the expansion of (x^(2)+(1)/(x))^(2n) is :

If 'n' is a positive integer then prove that the coefficient fo x^(m) in the expansion of (x^(2)+(1)/(x))^(2n) is :

The coefficients fo x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) are in the ratio

The coefficient of x^n in the expansion of (1 + x+x^2+...........)^-n , is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. Prove that (4)/(1!) + (11)/(21) + (22)/(3!) + (37)/(4!) + (56)/(5!) +...

    Text Solution

    |

  2. The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!...

    Text Solution

    |

  3. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  4. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  5. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  6. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  7. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  8. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  9. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  10. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  11. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  12. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  13. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  14. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  15. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  16. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  17. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  18. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  19. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  20. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |