Home
Class 12
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `ax^(2)+bx+c=0` then `log(a-bx+cx^(2))` is equal to

A

`log a+(alpha+beta)x+(alpha^(2)+beta^(1))/(2)x^(2)+(alpha^(3)+beta^(3))/(3)x^(3)`+...

B

`log a +(alpha+beta) x+(alpha^(2)+beta^(2))/(2)x^(2)+(alpha^(3)+beta^(3))/(3)x^(3)`+…

C

`log a-(alpha+beta)x-(alpha^(2)+beta^(1))/(2)x^(2)-(alpha^(3)+beta^(3))/(3)x^(3)`+...

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the expression for \( \log(a - bx + cx^2) \) given that \( \alpha \) and \( \beta \) are the roots of the quadratic equation \( ax^2 + bx + c = 0 \). ### Step-by-Step Solution: 1. **Identify the Roots**: Given the quadratic equation \( ax^2 + bx + c = 0 \), the roots \( \alpha \) and \( \beta \) can be expressed using Vieta's formulas: - Sum of the roots: \( \alpha + \beta = -\frac{b}{a} \) - Product of the roots: \( \alpha \beta = \frac{c}{a} \) 2. **Rewrite the Expression**: We need to rewrite the expression \( a - bx + cx^2 \) in a form that incorporates the roots: \[ a - bx + cx^2 = a + c x^2 - b x \] 3. **Factor out \( a \)**: We can factor \( a \) out of the expression: \[ a - bx + cx^2 = a \left(1 - \frac{b}{a}x + \frac{c}{a}x^2\right) \] Substituting the values from Vieta's formulas, we have: \[ = a \left(1 + (\alpha + \beta)x + \alpha \beta x^2\right) \] 4. **Apply the Logarithm**: Now we can apply the logarithm: \[ \log(a - bx + cx^2) = \log\left(a \left(1 + (\alpha + \beta)x + \alpha \beta x^2\right)\right) \] 5. **Use Logarithm Properties**: Using the property of logarithms \( \log(mn) = \log(m) + \log(n) \): \[ \log(a - bx + cx^2) = \log(a) + \log\left(1 + (\alpha + \beta)x + \alpha \beta x^2\right) \] 6. **Expand the Logarithm**: The logarithm \( \log(1 + u) \) can be expanded using Taylor series for small \( u \): \[ \log(1 + u) \approx u - \frac{u^2}{2} + \frac{u^3}{3} - \ldots \] Here, \( u = (\alpha + \beta)x + \alpha \beta x^2 \). 7. **Final Expression**: Thus, we can write: \[ \log(a - bx + cx^2) = \log(a) + \left((\alpha + \beta)x + \alpha \beta x^2\right) - \frac{1}{2}\left((\alpha + \beta)x + \alpha \beta x^2\right)^2 + \ldots \] ### Conclusion: The final expression for \( \log(a - bx + cx^2) \) is: \[ \log(a) + \log\left(1 + (\alpha + \beta)x + \alpha \beta x^2\right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta are the roots of the equation ax^(2) -bx +c=0 then equation (a+cy)^(2) =b^(2) y has the roots

If alpha, beta are the roots of the equation ax^(2) +2bx +c =0 and alpha +h, beta + h are the roots of the equation Ax^(2) +2Bx + C=0 then

IF alpha , beta are the roots of the equation ax^2+ bx +c=0 then the quadratic equation whose roots are alpha + beta , alpha beta is

If alpha, beta be the roots of the equation ax^(2)+bx+c=0 , then the roots of the equation ax^(2)+blambda x+c lambda^(2)=0 , lambda^(2) !=0 , are

If alpha,beta are the roots of the equation ax^2 + bx +c=0 such that beta < alpha < 0 , then the quadratic equation whose roots are |alpha|,|beta| is given by

If alpha, beta be the roots of the equation ax^2 + bx + c= 0 and gamma, delta those of equation lx^2 + mx + n = 0 ,then find the equation whose roots are alphagamma+betadelta and alphadelta+betagamma

If alpha, beta are the roots of the equation ax^2 + bx +c=0 then the value of (1+alpha+alpha^2)(1+beta+beta^2) is

If alpha, beta are the roots of the quadratic equation ax^(2)+bx+c=0, form a quadratic equation whose roots are alpha^(2)+beta^(2) and alpha^(-2) + beta^(-2) .

If alpha, beta, gamma are the roots of the equation x^(3) + ax^(2) + bx + c = 0, "then" alpha^(-1) + beta^(-1) + gamma^(-1)=

If alpha and beta are the roots of the equation ax ^(2) + bx + c=0,a,b, c in R , alpha ne 0 then which is (are) correct:

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The coefficient of x^n in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4!...

    Text Solution

    |

  2. The coefficent of x^(n) in the expansion of (1+(x^(2))/(2!)+(x^(4))/(4...

    Text Solution

    |

  3. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  4. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  5. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  6. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  7. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  8. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  9. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  10. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  11. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  12. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  13. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  14. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  15. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  16. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  17. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  18. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  19. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  20. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |