Home
Class 12
MATHS
The sum of the series 1+(1^2+2^2)/(2!)...

The sum of the series
`1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!)`+.. Is

A

3e

B

`(17)/(6)e`

C

`(31)/(6)e`

D

`(13)/(6)e`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = 1 + \frac{1^2 + 2^2}{2!} + \frac{1^2 + 2^2 + 3^2}{3!} + \frac{1^2 + 2^2 + 3^2 + 4^2}{4!} + \ldots \] we can break it down step by step. ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ T_n = \frac{1^2 + 2^2 + 3^2 + \ldots + n^2}{n!} \] ### Step 2: Use the Formula for the Sum of Squares The sum of the first \( n \) squares is given by the formula: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] Thus, we can rewrite \( T_n \): \[ T_n = \frac{\frac{n(n + 1)(2n + 1)}{6}}{n!} = \frac{n(n + 1)(2n + 1)}{6n!} \] ### Step 3: Write the Series Now, we can express the series \( S \) as: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{n(n + 1)(2n + 1)}{6n!} \] ### Step 4: Simplify the Series We can factor out the constant \( \frac{1}{6} \): \[ S = \frac{1}{6} \sum_{n=1}^{\infty} \frac{n(n + 1)(2n + 1)}{n!} \] ### Step 5: Break Down the Series We can express \( n(n + 1)(2n + 1) \) in terms of factorials: \[ n(n + 1)(2n + 1) = 2n^3 + 3n^2 + n \] Thus, we can separate the series: \[ S = \frac{1}{6} \left( 2 \sum_{n=1}^{\infty} \frac{n^3}{n!} + 3 \sum_{n=1}^{\infty} \frac{n^2}{n!} + \sum_{n=1}^{\infty} \frac{n}{n!} \right) \] ### Step 6: Evaluate Each Series Using the known series expansions: 1. \( \sum_{n=0}^{\infty} \frac{n}{n!} = e \) 2. \( \sum_{n=0}^{\infty} \frac{n^2}{n!} = e \) (using the fact that \( n^2 = n + n(n-1) \)) 3. \( \sum_{n=0}^{\infty} \frac{n^3}{n!} = e \) (similar reasoning) Thus: \[ \sum_{n=1}^{\infty} \frac{n}{n!} = e - 1 \] \[ \sum_{n=1}^{\infty} \frac{n^2}{n!} = e \] \[ \sum_{n=1}^{\infty} \frac{n^3}{n!} = e + 2(e - 1) = 3e - 2 \] ### Step 7: Substitute Back Now substituting back into the expression for \( S \): \[ S = \frac{1}{6} \left( 2(3e - 2) + 3e + (e - 1) \right) \] This simplifies to: \[ S = \frac{1}{6} \left( 6e - 4 + 3e + e - 1 \right) = \frac{1}{6} \left( 10e - 5 \right) = \frac{5e - \frac{5}{2}}{3} \] ### Final Result Thus, the sum of the series is: \[ S = \frac{5e - \frac{5}{2}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!) +.. Is

The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)) +…is

The sum of the series (1^(2))/(1!)+(2^(2))/(2!)+(3^(2))/(3!) +……to infty is

The sum of series (1)^(2)/(1.2!)+(1^(2)+2^(2))/(2.3!)+(1^(2)+2^(2)+3^(2))//(3.4!)+..+(1^(2)+2^(2)+…+n^(2))/(n.(n+1))!+..infty is equals to

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

Find the sum to n terms of the series : 1^(2)+(1^(2)+2^(2))+(1^(2)+2^(2)+3^(2))+ ….

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(2))+ (4^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

The sum of the series 1+(1+a)/(2!)+(1+a+a^(2))/(3!)+(1+a+a^(2)+a^(3))/(4!) +…..is

The sum of the series 1+(2^(4))/(2!)+(3^(4))/(3!)+(4^(4))/(4!)+(5^(4))/(5!) +…..is

The sum of the series (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3) ….. To infty is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-b...

    Text Solution

    |

  2. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  3. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  4. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  5. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  6. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  7. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  8. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  9. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  10. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  11. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  12. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  13. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  14. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  15. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  16. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  17. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  18. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  19. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  20. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |