Home
Class 12
MATHS
The coefficent of x^(n) in the series ...

The coefficent of `x^(n)` in the series
`1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+(a+bx)^(3)/(3!)`+…is

A

`(b^(n))/(n!)`

B

`e^(b)(b^(n))/(n!)`

C

`e^(a)(b^(n))/(m!)`

D

`(e^(b)a^(n))/(n!)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient of \( x^n \) in the series \[ 1 + \frac{(a + bx)}{1!} + \frac{(a + bx)^2}{2!} + \frac{(a + bx)^3}{3!} + \ldots \] we can follow these steps: ### Step 1: Identify the General Term The general term of the series can be expressed as: \[ \frac{(a + bx)^k}{k!} \] where \( k \) starts from 0 and goes to infinity. ### Step 2: Expand the General Term We need to expand \( (a + bx)^k \) using the binomial theorem: \[ (a + bx)^k = \sum_{j=0}^{k} \binom{k}{j} a^{k-j} (bx)^j = \sum_{j=0}^{k} \binom{k}{j} a^{k-j} b^j x^j \] ### Step 3: Find the Coefficient of \( x^n \) To find the coefficient of \( x^n \) in the series, we look for the terms where \( j = n \): \[ \frac{(a + bx)^k}{k!} \text{ contributes } \frac{\binom{k}{n} a^{k-n} b^n}{k!} \] ### Step 4: Sum Over All \( k \) Now, we need to sum this expression for \( k \) from \( n \) to \( \infty \): \[ \sum_{k=n}^{\infty} \frac{\binom{k}{n} a^{k-n} b^n}{k!} \] ### Step 5: Simplify the Expression Using the identity \( \binom{k}{n} = \frac{k!}{n!(k-n)!} \), we can rewrite the sum: \[ = b^n \sum_{k=n}^{\infty} \frac{a^{k-n}}{(k-n)! n!} \] Letting \( m = k - n \), we can change the index of summation: \[ = b^n \frac{1}{n!} \sum_{m=0}^{\infty} \frac{a^m}{m!} = b^n \frac{1}{n!} e^a \] ### Final Result Thus, the coefficient of \( x^n \) in the series is: \[ \frac{b^n e^a}{n!} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Coffiecient of x^n in e^(a +bx) is

The coefficient of x^(n) in the expansion of (a+bx+cx^(2))/(e^(x)) is

Coffiecient of x^3 in the expansion of e^(-bx)

Find the coefficient of x^(7) in the expansion of (ax^(2) + (1)/(bx))^(11) . (ii) the coefficient of x^(-7) in the expansion of (ax + (1)/(bx^2))^(11) . Also , find the relation between a and b , so that these coefficients are equal .

If the coefficient x^(2) and x^(3) in the expansion of (1 + 8x + bx^(2))(1 - 3x)^(9) in the power of x are equal , then b is :

Find (a) the coefficient of x^7 in the epansion of (ax^2+1/(bx))^11 (b) The coefficient of x^(-7) in the expansion of (ax^2+1/(bx))^11 Also , find the relation between a and b, so that these coefficients are equal .

int(1)/((a+bx)^(5) )dx

Find the coefficient of x^7 in ( ax^(2) + (1)/( bx) )^(11) and the coefficient of x^(-7) in (ax + (1)/(bx^(2) ))^(11) . If these coefficients are equal, find the relation between a and b .

If a^2 + b = 2 , then maximum value of the term independent of x in the expansion of ( ax^(1/6) + bx^(-1/3))^9 is (a > 0; b > 0)

{:(ax + by = 1),(bx + ay = ((a + b)^(2))/(a^(2) + b^(2))-1):}

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)...

    Text Solution

    |

  2. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  3. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  4. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  5. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  6. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  7. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  8. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  9. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  10. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  11. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  12. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  13. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  14. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  15. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  16. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  17. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  18. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  19. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  20. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |