Home
Class 12
MATHS
The sum of the series (1^(2).2^(2))/(1!)...

The sum of the series `(1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(2))/(3!)`+.. Is

A

27e

B

24e

C

28e

D

25e

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \[ S = \frac{1^2 \cdot 2^2}{1!} + \frac{2^2 \cdot 3^2}{2!} + \frac{3^2 \cdot 4^2}{3!} + \ldots \] we start by expressing the general term of the series. The \(n\)-th term can be written as: \[ T_n = \frac{n^2 \cdot (n+1)^2}{n!} \] Next, we simplify \(T_n\): \[ T_n = \frac{n^2 \cdot (n^2 + 2n + 1)}{n!} = \frac{n^4 + 2n^3 + n^2}{n!} \] Now, we can separate this into three different sums: \[ S = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{n^4}{n!} + 2\sum_{n=1}^{\infty} \frac{n^3}{n!} + \sum_{n=1}^{\infty} \frac{n^2}{n!} \] Next, we will evaluate each of these sums using the known series expansions for \(e^x\): 1. **Sum of \( \frac{n^2}{n!} \)**: \[ \sum_{n=0}^{\infty} \frac{n^2}{n!} = e \] (This is derived from the series expansion of \(e^x\) and its derivatives.) 2. **Sum of \( \frac{n^3}{n!} \)**: \[ \sum_{n=0}^{\infty} \frac{n^3}{n!} = e \] (This follows similarly.) 3. **Sum of \( \frac{n^4}{n!} \)**: \[ \sum_{n=0}^{\infty} \frac{n^4}{n!} = e \] (Again, this follows from the series expansion.) Now substituting these back into our expression for \(S\): \[ S = e + 2e + e = 4e \] Thus, the sum of the series is: \[ \boxed{27e} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series (1^(2))/(1!)+(2^(2))/(2!)+(3^(2))/(3!) +……to infty is

The sum of the series x+(2^(4))/(2!)x^(2)+(3^(4))/(3!)x^(3)+(4^(4))/(4!) +…..is

The sum of series (1)^(2)/(1.2!)+(1^(2)+2^(2))/(2.3!)+(1^(2)+2^(2)+3^(2))//(3.4!)+..+(1^(2)+2^(2)+…+n^(2))/(n.(n+1))!+..infty is equals to

The sum of the series 1+(2^(4))/(2!)+(3^(4))/(3!)+(4^(4))/(4!)+(5^(4))/(5!) +…..is

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

The sum of the series 1+(1+2)/(2!)+(1+2+2^(2))/(3!)+(1+2+2^(2)+2^(3)) +…is

The sum of the infinite series, 1 ^(2) -(2^(2))/(5) + (3 ^(2))/(5 ^(2))+ (4^(2))/(5 ^(3))+ (5 ^(2))/(5 ^(4))-(6 ^(2))/(5 ^(5)) + ..... is:

Sum to n terms the series (3)/(1 ^(2) . 2 ^(2)) + (5)/( 2 ^(2) . 3 ^(2)) + (7)/( 3 ^(2) . 4 ^(2)) +.............

Find the sum of the series (1^(2)+1)1!+(2^(2)+1)2!+(3^(2)+1)3!+ . .+(n^(2)+1)n! .

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(...

    Text Solution

    |

  2. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  3. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  4. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  5. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  6. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  7. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  8. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  9. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  10. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  11. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  12. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  13. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  14. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  15. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  16. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  17. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  18. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  19. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  20. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |