Home
Class 12
MATHS
The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)...

The value of `(x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4+y^4+x^2y^2)+`... is :

A

`e^(x^(2))-e^(y^(2))`

B

`e^(x^(2))+e^(y^(2))`

C

`e^(x^(2))-(y^(2))`

D

`e^(x^(2))+(y^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the series step by step. ### Given Series: \[ S = (x+y)(x-y) + \frac{1}{2!}(x+y)(x-y)(x^2+y^2) + \frac{1}{3!}(x+y)(x-y)(x^4+y^4+x^2y^2) + \ldots \] ### Step 1: Factor Out Common Terms Notice that each term in the series has a common factor of \((x+y)(x-y)\). We can factor this out: \[ S = (x+y)(x-y) \left( 1 + \frac{1}{2!}(x^2+y^2) + \frac{1}{3!}(x^4+y^4+x^2y^2) + \ldots \right) \] ### Step 2: Simplify the Series Inside the Parentheses Now, let's denote the series inside the parentheses as \(T\): \[ T = 1 + \frac{1}{2!}(x^2+y^2) + \frac{1}{3!}(x^4+y^4+x^2y^2) + \ldots \] ### Step 3: Identify the Pattern in the Series The terms in \(T\) can be recognized as the series expansion of \(e^{x^2}\) and \(e^{y^2}\): - The term \(1\) corresponds to \(e^0\). - The term \(\frac{x^2}{1!}\) corresponds to the first term of the series for \(e^{x^2}\). - The term \(\frac{x^4}{2!}\) corresponds to the second term of the series for \(e^{x^2}\), and so on. Thus, we can express \(T\) in terms of exponential functions: \[ T = e^{x^2} - 1 + e^{y^2} - 1 \] ### Step 4: Combine the Results Now we can substitute \(T\) back into our expression for \(S\): \[ S = (x+y)(x-y) \left( e^{x^2} - 1 + e^{y^2} - 1 \right) \] \[ = (x+y)(x-y) \left( e^{x^2} + e^{y^2} - 2 \right) \] ### Step 5: Final Result Thus, the value of the original series is: \[ S = (x+y)(x-y) \left( e^{x^2} - e^{y^2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

(x−y)(x+y)(x^2+y^2)(x^4+y^4) is equal to=

6/(x+y)=7/(x-y)+3 , 1/(2(x+y))=1/(3(x-y))

Simplify: (3x+2y)(4x+3y)-\ (2x-y)(7x-3y)

Verify : (i) x^3+y^3=(x+y)(x^2-x y+y^2) (ii) x^3-y^3=(x-y)(x^2+x y+y^2)

If xa n dy are of same sign, then the value of (x^3)/2cos e c^2(1/2tan^(-1)x/y)+(y^3)/2sec^2(1/2tan^(-1)y/x) is equal to (x-y)(x^2+y^2) (b) (x+y)(x^2-y^2) (x+y)(x^2+y^2)dot (d) (x-y)(x^2-y^2)

Find the value of x , y 2x+3y=6 3x-2y=4 .

The factors of x^3-x^2y-x y^2+y^3 are (a (x+y)(x^2-x y+y^2) (b) (x+y)(x^2+x y+y^2) (c) (x+y)^2(x-y) (d) (x-y)^2(x+y)

If x=4 and y=1, find the value of ((x)/(2)-(y)/(3))((x^(2))/(4)+(xy)/(6)+(y^(2))/(9)) .

If 7x - 15y = 4x + y , find the value of x: y . Hence, use componendo and dividendo to find the values of : (i) (9x + 5y)/(9x - 5y) (iI) (3x^(2) + 2y^(2))/(3x^(2) - 2y^(2))

Factorize : (1) (x+y)(2x+3y)-(x+y)(x+1) (2) (x+y)(2a+b)-(3x-2y)(2a+b)

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The coefficent of x^(n) in the series 1+(a+bx)/(1!)+(a+bx)^(2)/(2!)+...

    Text Solution

    |

  2. The sum of the series (1^(2).2^(2))/(1!)+(2^(2).3^(2))/(2!)+(3^(2).4^(...

    Text Solution

    |

  3. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  4. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  5. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  6. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  7. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  8. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  9. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  10. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  11. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  12. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  13. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  14. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  15. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  16. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  17. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  18. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  19. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  20. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |