Home
Class 12
MATHS
If (e^(5x)+e^(x))/(e^(3x)) is expand in ...

If `(e^(5x)+e^(x))/(e^(3x))` is expand in a series of ascending powers of x and n is and odd natural number then the coefficent of `x^(n)` is

A

`(2^(n))/(n!)`

B

`(2^(n+1))/(2n)!`

C

`(2^(2n))/(2n)!`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to expand the expression \((e^{5x} + e^{x}) / e^{3x}\) in a series of ascending powers of \(x\) and find the coefficient of \(x^n\) where \(n\) is an odd natural number. ### Step 1: Expand \(e^{5x}\), \(e^{x}\), and \(e^{3x}\) Using the Taylor series expansion for \(e^x\), we have: \[ e^{kx} = 1 + kx + \frac{(kx)^2}{2!} + \frac{(kx)^3}{3!} + \cdots \] Thus, we can write: \[ e^{5x} = 1 + 5x + \frac{(5x)^2}{2!} + \frac{(5x)^3}{3!} + \cdots \] \[ e^{x} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \] \[ e^{3x} = 1 + 3x + \frac{(3x)^2}{2!} + \frac{(3x)^3}{3!} + \cdots \] ### Step 2: Combine the Numerator Now, we combine \(e^{5x}\) and \(e^{x}\): \[ e^{5x} + e^{x} = \left(1 + 5x + \frac{(5x)^2}{2!} + \frac{(5x)^3}{3!} + \cdots\right) + \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\right) \] Combining like terms: \[ = 2 + (5x + x) + \left(\frac{(5^2)x^2}{2!} + \frac{x^2}{2!}\right) + \left(\frac{(5^3)x^3}{3!} + \frac{x^3}{3!}\right) + \cdots \] \[ = 2 + 6x + \left(\frac{25 + 1}{2}x^2\right) + \left(\frac{125 + 1}{6}x^3\right) + \cdots \] ### Step 3: Expand the Denominator Next, we expand the denominator \(e^{3x}\): \[ e^{3x} = 1 + 3x + \frac{(3x)^2}{2!} + \frac{(3x)^3}{3!} + \cdots \] ### Step 4: Form the Complete Expression Now we have: \[ \frac{e^{5x} + e^{x}}{e^{3x}} = \frac{2 + 6x + \frac{26}{2}x^2 + \frac{126}{6}x^3 + \cdots}{1 + 3x + \frac{9}{2}x^2 + \frac{27}{6}x^3 + \cdots} \] ### Step 5: Coefficient of \(x^n\) To find the coefficient of \(x^n\) where \(n\) is an odd natural number, we note that the numerator contributes terms of the form \(a_n x^n\) and the denominator contributes terms of the form \(b_n x^n\). The coefficient of \(x^n\) in the quotient can be found using the formula for coefficients in series division. However, since we are looking for odd \(n\), we can observe that the numerator will have contributions from odd powers of \(x\) and the denominator will have contributions from even powers of \(x\). Thus, when we divide, the odd powers will not yield a non-zero coefficient for odd \(n\). ### Conclusion Therefore, the coefficient of \(x^n\) for odd \(n\) in the series expansion of \((e^{5x} + e^{x}) / e^{3x}\) is zero. ### Final Answer: The coefficient of \(x^n\) where \(n\) is an odd natural number is **0**.
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

e^(5x)+e^(-5x)=

If n is odd natural number , then coefficient of x^n in (e^(5x)+e^x)/(e^(3x)) is

Expand (1+ 2 x + 3x^(2) )^(n) in a series of ascending powers of x up to and including the term in x^2 .

If (x-4)/(x^(2)-5x+6) can be expanded in the ascending powers of x , then the coefficient of x^(3) is

If "log"_(e) (1)/(1 + x + x^(2) + x^(3)) be expemnded in asecending power of x , show that the coefficient of x^(n) is - (1)/(n) if n is odd or of the form 4m + 2 and (3)/(n) if n is of the form 4m

Coefficient of x^(n) in (1-2x)/e^x is

The 4^(th) term in the expansion of (e^(x) -1-x)/x^2 in ascending power of x , is

Coffiecient of x^n in e^(a +bx) is

In the expansion of (e^(x)-1-x)/(x^(2)) is ascending powers of x the fourth term is

Expand (2+ x)^(5) - (2- x)^(5) in ascending powers of x and simplify your result.

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. The value of (x+y)(x-y)+1/(2!)(x+y)(x-y)(x^2+y^2)+1/(3!)(x+y)(x-y)(x^4...

    Text Solution

    |

  2. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  3. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  4. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  5. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  6. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  7. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  8. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  9. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  10. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  11. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  12. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  13. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  14. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  15. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  16. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  17. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  18. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  19. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  20. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |