Home
Class 12
MATHS
In the expansion of (e^(7x)+e^(3x))/(e^(...

In the expansion of `(e^(7x)+e^(3x))/(e^(5x))` the constant term is

A

`(4^(n-1)+(1-2))^(n)/(n!)`

B

`(4^(n-1)+(2n))/(n!)`

C

`(4^(n-1)+(1-2))^(n-1)/(n!)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the constant term in the expression \((e^{7x} + e^{3x}) / (e^{5x})\), we can follow these steps: ### Step 1: Simplify the Expression We start with the expression: \[ \frac{e^{7x} + e^{3x}}{e^{5x}} \] We can separate the terms in the numerator: \[ = \frac{e^{7x}}{e^{5x}} + \frac{e^{3x}}{e^{5x}} = e^{(7x - 5x)} + e^{(3x - 5x)} = e^{2x} + e^{-2x} \] ### Step 2: Recognize the Series Expansion The expression \(e^{2x} + e^{-2x}\) can be expanded using the Taylor series for \(e^x\): \[ e^{2x} = \sum_{n=0}^{\infty} \frac{(2x)^n}{n!} = 1 + 2x + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \ldots \] \[ e^{-2x} = \sum_{n=0}^{\infty} \frac{(-2x)^n}{n!} = 1 - 2x + \frac{(-2x)^2}{2!} - \frac{(-2x)^3}{3!} + \ldots \] ### Step 3: Combine the Series Now, we combine the two expansions: \[ e^{2x} + e^{-2x} = \left(1 + 2x + \frac{(2x)^2}{2!} + \ldots\right) + \left(1 - 2x + \frac{(-2x)^2}{2!} - \ldots\right) \] When we combine these, the linear terms \(2x\) and \(-2x\) cancel out: \[ = 1 + 1 + \frac{(2x)^2 + (-2x)^2}{2!} + \ldots = 2 + \frac{8x^2}{2} + \ldots \] ### Step 4: Identify the Constant Term From the combined series, we can see that the constant term is: \[ 2 \] ### Conclusion Thus, the constant term in the expansion of \((e^{7x} + e^{3x}) / (e^{5x})\) is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The coeffiecient of x^n in the expansion of (e^(7x) +e^x)/(e^(3x)) is

e^(7x)-e^(-7x)=

In the expansion of (5x-3) (x + 2)^(2) , find : constant term

e^(5x)+e^(-5x)=

In the expansion of (e^(x)-1-x)/(x^(2)) is ascending powers of x the fourth term is

In the expansion of (x +a)^(n) the sum of even terms is E and that of odd terms is O, them O^(2) + E^(2) is equal to

In the expansion of (x + a)^(n) the sum of even terms is E and that of odd terms is O, then OE is equal to

The 4^(th) term in the expansion of (e^(x) -1-x)/x^2 in ascending power of x , is

The constant term in the expansion of (3^(x)-2^(x))/(x^(2)) is

Evaluate: int(e^(3x)+e^(5x))/(e^x+e^(-x))dx

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If e^(x)=y+sqrt(1+y^(2) then the value of y is

    Text Solution

    |

  2. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  3. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  4. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  5. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  6. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  7. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  8. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  9. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  10. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  11. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  12. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  13. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  14. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  15. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  16. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  17. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  18. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  19. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  20. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |