Home
Class 12
MATHS
The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2...

The value of `sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-12sqrt(2)/(16)+..+++..+ add.infty` is

A

`log_(e)2`

B

`log_(e)sqrt(2)`

C

`log_(e)3`

D

`log_(e)sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression given in the question: \[ \frac{\sqrt{2}-1}{\sqrt{2}} + 3 - \frac{2\sqrt{2}}{4} + \left(5\sqrt{2} - \frac{7}{6}\right)\sqrt{2} + 17 - \frac{12\sqrt{2}}{16} + \ldots \] we will simplify each term step by step. ### Step 1: Simplify the first term The first term is: \[ \frac{\sqrt{2}-1}{\sqrt{2}} \] This can be simplified as follows: \[ \frac{\sqrt{2}}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 1 - \frac{1}{\sqrt{2}} = 1 - \frac{\sqrt{2}}{2} \] ### Step 2: Simplify the second term The second term is: \[ 3 - \frac{2\sqrt{2}}{4} \] This simplifies to: \[ 3 - \frac{\sqrt{2}}{2} \] ### Step 3: Simplify the third term The third term is: \[ (5\sqrt{2} - \frac{7}{6})\sqrt{2} \] This expands to: \[ 5\cdot2 - \frac{7\sqrt{2}}{6} = 10 - \frac{7\sqrt{2}}{6} \] ### Step 4: Simplify the fourth term The fourth term is: \[ 17 - \frac{12\sqrt{2}}{16} \] This simplifies to: \[ 17 - \frac{3\sqrt{2}}{4} \] ### Step 5: Combine all terms Now, we combine all the simplified terms: 1. From Step 1: \(1 - \frac{\sqrt{2}}{2}\) 2. From Step 2: \(3 - \frac{\sqrt{2}}{2}\) 3. From Step 3: \(10 - \frac{7\sqrt{2}}{6}\) 4. From Step 4: \(17 - \frac{3\sqrt{2}}{4}\) Combining these gives: \[ \left(1 + 3 + 10 + 17\right) - \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} + \frac{7\sqrt{2}}{6} + \frac{3\sqrt{2}}{4}\right) \] Calculating the constant part: \[ 1 + 3 + 10 + 17 = 31 \] Now we need to combine the \(\sqrt{2}\) terms: \[ \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} = \sqrt{2} \] Now, we need a common denominator to combine the remaining terms: The common denominator for \(\frac{7\sqrt{2}}{6}\) and \(\frac{3\sqrt{2}}{4}\) is 12: \[ \frac{7\sqrt{2}}{6} = \frac{14\sqrt{2}}{12} \] \[ \frac{3\sqrt{2}}{4} = \frac{9\sqrt{2}}{12} \] So: \[ \sqrt{2} + \frac{14\sqrt{2}}{12} + \frac{9\sqrt{2}}{12} = \sqrt{2} + \frac{23\sqrt{2}}{12} \] Now, we can express \(\sqrt{2}\) as \(\frac{12\sqrt{2}}{12}\): \[ \frac{12\sqrt{2}}{12} + \frac{23\sqrt{2}}{12} = \frac{35\sqrt{2}}{12} \] ### Final Result Putting it all together: \[ 31 - \frac{35\sqrt{2}}{12} \] This expression converges to a specific value as \(n\) approaches infinity, which is given in the question as: \[ \log(2) \text{ (base e)} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The value of log_((sqrt(2)-1))(5sqrt(2)-7) is :

The value of "log"_(sqrt(2)) sqrt(2sqrt(2sqrt(2sqrt(2)))) , is

Simplify : (sqrt(2))/(sqrt(6)-sqrt(2))- (sqrt(3))/(sqrt(6)+sqrt(2))

The value 4^(5log_(4sqrt(2))(3-sqrt(6))-6log_8(sqrt(3)-sqrt(2))) is

The value of cos^-1[cot(sin^-1(sqrt((2-sqrt3)/4))+cos^-1(sqrt12/4)+sec^-1sqrt2)

The value of lim_(xto2a)(sqrt(x-2a)+sqrt(x)-sqrt(2a))/(sqrt(x^2-4a^2)) is

Add 2sqrt(2)+5sqrt(3) and sqrt(2)-3sqrt(3) .

The value of sqrt(5+2sqrt(6)) is (a) sqrt(3)-sqrt(2) (b) sqrt(3)+sqrt(2) (c) sqrt(5)+sqrt(6) (d) none of these

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

sqrt 2(sqrt 2+1) - sqrt 2 (1+sqrt2) =?

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If (e^(5x)+e^(x))/(e^(3x)) is expand in a series of ascending powers o...

    Text Solution

    |

  2. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  3. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  4. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  5. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  6. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  7. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  8. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  9. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  10. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  11. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  12. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  13. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  14. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  15. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  16. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  17. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  18. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  19. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  20. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |