Home
Class 12
MATHS
If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(...

If `y=2x^(2)-1` then `(1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty` equals to

A

-`log_(e)((y-1)/(y+1))`

B

`log_(e)((1+y)/(1-y))`

C

`log_(e)((1-y)/(1+y))`

D

`log((1+2y)/(1-2y))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the series: \[ \frac{1}{x^2} + \frac{1}{2x^4} + \frac{1}{3x^6} + \ldots \] This series can be expressed in a more manageable form. We can rewrite it as: \[ \sum_{n=1}^{\infty} \frac{1}{n x^{2n}} \] This is a standard series that can be related to the logarithmic function. The series: \[ \sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x) \] can be differentiated to find a series that resembles our original series. ### Step 1: Recognize the series We can recognize that our series is similar to the Taylor series expansion of \(-\ln(1-x)\). Specifically, we can relate it to: \[ \sum_{n=1}^{\infty} \frac{1}{n} x^n = -\ln(1-x) \] ### Step 2: Substitute \(x\) with \(\frac{1}{x^2}\) To match our series, we substitute \(x\) with \(\frac{1}{x^2}\): \[ \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1}{x^2}\right)^n = -\ln\left(1 - \frac{1}{x^2}\right) \] ### Step 3: Simplify the logarithm Now we can simplify the logarithm: \[ -\ln\left(1 - \frac{1}{x^2}\right) = -\ln\left(\frac{x^2 - 1}{x^2}\right) = -\ln(x^2 - 1) + \ln(x^2) \] ### Step 4: Use the given expression for \(y\) From the problem, we know that \(y = 2x^2 - 1\). We can express \(x^2\) in terms of \(y\): \[ x^2 = \frac{y + 1}{2} \] ### Step 5: Substitute \(x^2\) into the logarithm Now we substitute \(x^2\) into our logarithmic expression: \[ -\ln\left(\frac{y + 1}{2} - 1\right) + \ln\left(\frac{y + 1}{2}\right) \] This simplifies to: \[ -\ln\left(\frac{y - 1}{2}\right) + \ln\left(\frac{y + 1}{2}\right) \] ### Step 6: Combine the logarithms Using the properties of logarithms, we can combine these: \[ \ln\left(\frac{y + 1}{2}\right) - \ln\left(\frac{y - 1}{2}\right) = \ln\left(\frac{y + 1}{y - 1}\right) \] ### Final Answer Thus, the sum of the series is: \[ \ln\left(\frac{y + 1}{y - 1}\right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

The value of lim_(xrarr0)((1+6x)^((1)/(3))-(1+4x)^((1)/(2)))/(x^(2)) is equal to

If lim_(a rarr infty) (1)/(a)int_(0)^(infty)(x^(2)+ax+1)/(1+x^(4)). "tan"^(-1)((1)/(x))dx is equal to (pi^(2))/(K), where K in N, then K equals to

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

The sum of the series (1)/(1!)x+(2)/(2!)x^(2)+(3)/(3!)x^(3) ….. To infty is

The solution of (dy)/(dx)=((x-1)^2+(y-2)^2tan^(- 1)((y-2)/(x-1)))/((x y-2x-y+2)tan^(- 1)((y-2)/(x-1))) is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

If y = tan^(-1) (x/(1 + 6x^2)) + tan^(-1) ((2x - 1)/(2x + 1)), (AA x > 0) then (dy)/(dx) is equal to

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. In the expansion of (e^(7x)+e^(3x))/(e^(5x)) the constant term is

    Text Solution

    |

  2. The value of sqrt(2-1)/sqrt(2)+3-2sqrt(2)/(4)+(5sqrt2-7/6)sqrt(2)+17-1...

    Text Solution

    |

  3. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  4. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  5. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  6. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  7. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  8. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  9. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  10. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  11. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  12. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  13. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  14. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  15. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  16. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  17. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  18. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  19. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  20. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |