Home
Class 12
MATHS
If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)...

If `(e^(x))/(1-x) = B_(0) +B_(1)x+B_(2)x^(2)+...+B_(n)x^(n)+... `, then the value of `B_(n) - B_(n-1)` is

A

`(1)/(n!)`

B

`(1)/(n-1)!`

C

`(1)/(n!)-(1)/(n-1)!`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \frac{e^x}{1-x} = B_0 + B_1 x + B_2 x^2 + \ldots + B_n x^n + \ldots \] ### Step 1: Rearranging the equation We can rearrange the equation to isolate \( e^x \): \[ e^x = (1 - x)(B_0 + B_1 x + B_2 x^2 + \ldots + B_n x^n + \ldots) \] ### Step 2: Expanding \( e^x \) The Taylor series expansion for \( e^x \) is: \[ e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots + \frac{x^n}{n!} + \ldots \] ### Step 3: Expanding the right-hand side Now, we expand the right-hand side: \[ (1 - x)(B_0 + B_1 x + B_2 x^2 + \ldots) = B_0 + (B_1 - B_0)x + (B_2 - B_1)x^2 + (B_3 - B_2)x^3 + \ldots \] ### Step 4: Comparing coefficients Now we need to compare coefficients of \( x^n \) from both sides of the equation. From the left-hand side, the coefficient of \( x^n \) in \( e^x \) is \( \frac{1}{n!} \). From the right-hand side, the coefficient of \( x^n \) is \( B_n - B_{n-1} \). ### Step 5: Setting up the equation Equating the coefficients gives us: \[ B_n - B_{n-1} = \frac{1}{n!} \] ### Conclusion Thus, the value of \( B_n - B_{n-1} \) is: \[ \boxed{\frac{1}{n!}} \] ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=a_0+a_1x+a_2x^2+...+a_n x^n and (f(x))/(1-x)=b_0+b_1x+b_2x^2+...+b_n x^n , then a. b_n+b_(n-1)=a_n b. b_n-b_(n-1)=a_n c. b_n/b_(n-1)=a_n d. none of these

if int (1+x^n)^(1/n)/x^(n+2)dx = a(1+1/x^4)^b+c then value of a+b=

If A and B are coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) respectively, then find the value of (A)/(B) .

If A and B are coefficients of x^(n) in the expansion of (1+x)^(2n) and (1+x)^(2n-1) respectively, then find the value of (A)/(B) .

If |(x^n ,x^(n+2), x^(2n)),(1, x^a, a), (x^(n+5), x^(a+6), x^(2n+5))|=0,AAx in R ,w h e r en in N , then value of a is n b. n-1 c. n+1 d. none of these

If f(x)=lim_(nrarroo)((x^(2)+ax+1)+x^(2n)(2x^(2)+x+b))/(1+x^(2n)) and lim_(xrarrpm1)f(x) exists, then The value of b is

If ("lim")_(xvecoo){(x^2+1)/(x+1)-(a x+b)}=0, then find the value of aa n dbdot

lim_(x to 0) (1+ax)^(b/x) =e^(2) , " where" a, b in N such that a+ b = 3 , then the value of (a,b) is

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If f(x) = (a-x^n)^(1/n) then fof(x) is (A) x (B) a-x (C) x^2 (D) -1/x^n

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |