Home
Class 12
MATHS
If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) ...

If `S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3)` then 9/4Sequals

A

`e-2`

B

`e+2`

C

`2e`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the series \( S = \sum_{n=2}^{\infty} \frac{3n^2 + 1}{(n^2 - 1)^3} \) and find \( \frac{9}{4} S \). ### Step-by-step Solution: 1. **Rewrite the Denominator**: The denominator \( n^2 - 1 \) can be factored as \( (n-1)(n+1) \). Thus, we can rewrite the series: \[ S = \sum_{n=2}^{\infty} \frac{3n^2 + 1}{((n-1)(n+1))^3} \] 2. **Use the Identity**: We can use the identity: \[ (n+1)^3 - (n-1)^3 = 6n^2 \] This implies: \[ 3n^2 + 1 = \frac{1}{2} \left( (n+1)^3 - (n-1)^3 \right) \] 3. **Substitute into the Series**: Substitute this identity into the series: \[ S = \sum_{n=2}^{\infty} \frac{1}{2} \cdot \frac{(n+1)^3 - (n-1)^3}{((n-1)(n+1))^3} \] 4. **Simplify the Series**: This can be rewritten as: \[ S = \frac{1}{2} \sum_{n=2}^{\infty} \left( \frac{1}{(n-1)^3} - \frac{1}{(n+1)^3} \right) \] 5. **Recognize the Telescoping Series**: The series is telescoping. When we expand it: \[ S = \frac{1}{2} \left( \left( \frac{1}{1^3} - \frac{1}{3^3} \right) + \left( \frac{1}{2^3} - \frac{1}{4^3} \right) + \left( \frac{1}{3^3} - \frac{1}{5^3} \right) + \ldots \right) \] Most terms cancel out, leaving us with: \[ S = \frac{1}{2} \left( 1 + \frac{1}{8} \right) = \frac{1}{2} \cdot \frac{9}{8} = \frac{9}{16} \] 6. **Calculate \( \frac{9}{4} S \)**: Now, we multiply \( S \) by \( \frac{9}{4} \): \[ \frac{9}{4} S = \frac{9}{4} \cdot \frac{9}{16} = \frac{81}{64} \] ### Final Result: Thus, the value of \( \frac{9}{4} S \) is \( \frac{81}{64} \). ---
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

Find the sum Sigma_(n=1)^(oo)(3n^2+1)/((n^2-1)^3)

sum_(n=1)^(oo) ((log_ex)^(2n-1))/((2n-1)!)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

The value of sum_(n=1)^oo\ (n^2+1)/((n+2)n!) is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |