Home
Class 12
MATHS
1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4...

`1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo`

A

`e-1`

B

`e^(1//2)-1`

C

`e^(1//2)+e`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \[ S = \frac{1}{1 \cdot 2} + \frac{1 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4} + \frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \ldots \] we will analyze the general term and relate it to the exponential function. ### Step 1: Identify the general term The first term is \(\frac{1}{1 \cdot 2}\), the second term is \(\frac{1 \cdot 3}{1 \cdot 2 \cdot 3 \cdot 4}\), and the third term is \(\frac{1 \cdot 3 \cdot 5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}\). We can see that the numerator consists of the product of odd numbers and the denominator consists of the product of even numbers. The \(n\)-th term can be expressed as: \[ T_n = \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{1 \cdot 2 \cdot 3 \cdots (2n)} = \frac{(2n)!}{2^n \cdot n!} \] ### Step 2: Rewrite the series using factorials The series can be rewritten as: \[ S = \sum_{n=1}^{\infty} \frac{(2n)!}{2^n \cdot n! \cdot (2n)!} \] This simplifies to: \[ S = \sum_{n=1}^{\infty} \frac{1}{2^n \cdot n!} \] ### Step 3: Recognize the series as an exponential function The series \[ \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \] If we set \(x = \frac{1}{2}\), we have: \[ e^{1/2} = 1 + \frac{1}{2} + \frac{1}{2^2 \cdot 2!} + \frac{1}{2^3 \cdot 3!} + \ldots \] Thus, \[ S = e^{1/2} - 1 \] ### Step 4: Final answer Therefore, the final result for the series is: \[ S = e^{1/2} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

1/(2.4) +(1.3)/(2.4.6)+(1.3.5)/(2.4.6.8)+.............oo is equal to

1+ (1)/(10^2) + (1.3)/(1.2). (1)/(10^4) + (1.3.5)/(1.2.3) . (1)/(10^6) + …… oo =

(1)/(1.2.3)+(1)/(3.4.5)+(1)/(5.6.7)+....

Find the sum of the infinite series (7)/(5)(1+(1)/(10^(2))+(1.3)/(1.2).(1)/(10^(4))+(1.3.5)/(1.2.3).(1)/(10^(6))+....)

Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+....

Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+....

(1)/(1.2)+(1)/(3.4)+(1)/(5.6)+....

Show that 1 + 1/2.(3/5) + (1.3)/(2.4) (3/5)^2 + (1.3.5)/(2.4.6) (3/5)^3 + …… = sqrt([5/2])

(1.3)/(1!) +(2.4)/(2!)+(3.5)/(3!) + (4.6)/(4!) + .......oo = .......

If x = (1)/(1.2) + (1)/(3.4) + (1)/(5.6) …….oo, and y = 1 - (1)/(2.3) - (1)/(4.5) - (1)/(6.7)…….oo , then

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |