Home
Class 12
MATHS
The sum of the series (12)/(2!)+(28)/(3...

The sum of the series `(12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+`…is

A

e

B

3e

C

4e

D

5e

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the series \(\frac{12}{2!} + \frac{28}{3!} + \frac{50}{4!} + \frac{78}{5!} + \ldots\), we will first identify the pattern in the numerators and then express the series in a more manageable form. ### Step 1: Identify the pattern in the numerators The numerators of the series are: - \(12\) - \(28\) - \(50\) - \(78\) Let's analyze the differences between consecutive terms: - \(28 - 12 = 16\) - \(50 - 28 = 22\) - \(78 - 50 = 28\) Now, let's analyze the differences of these differences: - \(22 - 16 = 6\) - \(28 - 22 = 6\) Since the second differences are constant, the numerators form a quadratic sequence. We can express the \(n\)-th term of the numerators as a quadratic function. ### Step 2: Find the quadratic function Assume the \(n\)-th term can be expressed as: \[ T_n = an^2 + bn + c \] We can set up equations using the known values: 1. For \(n=1\): \(T_1 = 12 \Rightarrow a(1^2) + b(1) + c = 12\) 2. For \(n=2\): \(T_2 = 28 \Rightarrow a(2^2) + b(2) + c = 28\) 3. For \(n=3\): \(T_3 = 50 \Rightarrow a(3^2) + b(3) + c = 50\) This gives us the system of equations: 1. \(a + b + c = 12\) 2. \(4a + 2b + c = 28\) 3. \(9a + 3b + c = 50\) ### Step 3: Solve the system of equations Subtract the first equation from the second: \[ (4a + 2b + c) - (a + b + c) = 28 - 12 \] \[ 3a + b = 16 \quad \text{(Equation 4)} \] Subtract the second equation from the third: \[ (9a + 3b + c) - (4a + 2b + c) = 50 - 28 \] \[ 5a + b = 22 \quad \text{(Equation 5)} \] Now, subtract Equation 4 from Equation 5: \[ (5a + b) - (3a + b) = 22 - 16 \] \[ 2a = 6 \Rightarrow a = 3 \] Substituting \(a = 3\) back into Equation 4: \[ 3(3) + b = 16 \Rightarrow 9 + b = 16 \Rightarrow b = 7 \] Now substitute \(a\) and \(b\) into the first equation: \[ 3 + 7 + c = 12 \Rightarrow c = 2 \] Thus, the \(n\)-th term of the numerators is: \[ T_n = 3n^2 + 7n + 2 \] ### Step 4: Write the series in summation form The series can now be expressed as: \[ S = \sum_{n=1}^{\infty} \frac{3n^2 + 7n + 2}{n!} \] ### Step 5: Split the series We can split the series into three separate series: \[ S = 3 \sum_{n=1}^{\infty} \frac{n^2}{n!} + 7 \sum_{n=1}^{\infty} \frac{n}{n!} + 2 \sum_{n=1}^{\infty} \frac{1}{n!} \] ### Step 6: Evaluate the series Using known results: 1. \(\sum_{n=0}^{\infty} \frac{1}{n!} = e\) 2. \(\sum_{n=1}^{\infty} \frac{n}{n!} = e\) 3. \(\sum_{n=1}^{\infty} \frac{n^2}{n!} = e + e = 2e\) Now substituting these results into our expression for \(S\): \[ S = 3(2e) + 7(e) + 2(e) = 6e + 7e + 2e = 15e \] ### Final Answer: The sum of the series is \(15e\).
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series (1)/(2!)-(1)/(3!)+(1)/(4!)-(1)/(5!) +….up to infty is

The sum of the series (4)/(1!)+(11)/(2!)+(22)/(3!)+(37)/(4!)+(56)/(5!) +..is

The sum of the series (1)/(1!)+(2)/(2!)+(3)/(3!)+(4)/(4!) +…..to infty is

The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo equals

The sum of the series (x^(2))/(2)+(2)/(3)x^(3)+(3)/(4)x^(4)+(4)/(5)x^(5)+….=

The sum of the series 1+(2^(3))/(2!)+(3^(3))/(3!)+(4^(3))/(4!) +… to infty is

The sum of the series 1+(2^(4))/(2!)+(3^(4))/(3!)+(4^(4))/(4!)+(5^(4))/(5!) +…..is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

The sum of the series x+(2^(4))/(2!)x^(2)+(3^(4))/(3!)x^(3)+(4^(4))/(4!) +…..is

The sum of the series x+(2^(3))/(2!)x^(2)+(3^(3))/(3!)x^(3)+(4^(3))/(4!)x^(4) +……..to infty is

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |