Home
Class 12
MATHS
If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Si...

If `a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!)`
then the value of `a^(3)+b^(3)+C^(3)-3abc` is

A

1

B

0

C

-1

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) where: - \( a = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} \) - \( b = \sum_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!} \) - \( c = \sum_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!} \) ### Step 1: Find \( a + b + c \) We start by adding \( a \), \( b \), and \( c \): \[ a + b + c = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!} + \sum_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!} \] Notice that the terms in \( b \) and \( c \) can be adjusted to start from \( n=0 \): \[ = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=0}^{\infty} \frac{x^{3n+1}}{(3n+1)!} + \sum_{n=0}^{\infty} \frac{x^{3n+2}}{(3n+2)!} \] This can be combined into a single series: \[ = \sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x \] ### Step 2: Find \( a + b\omega + c\omega^2 \) Let \( \omega \) be a primitive cube root of unity, i.e., \( \omega = e^{2\pi i / 3} \). We calculate: \[ a + b\omega + c\omega^2 = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=1}^{\infty} \frac{(x\omega)^{3n-2}}{(3n-2)!} + \sum_{n=1}^{\infty} \frac{(x\omega^2)^{3n-1}}{(3n-1)!} \] This can be rewritten as: \[ = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!} + \sum_{n=0}^{\infty} \frac{(x\omega)^{3n}}{(3n)!} + \sum_{n=0}^{\infty} \frac{(x\omega^2)^{3n}}{(3n)!} \] Factoring out the common term: \[ = \sum_{n=0}^{\infty} \frac{1}{(3n)!} \left( x^{3n} + (x\omega)^{3n} + (x\omega^2)^{3n} \right) \] This simplifies to: \[ = \sum_{n=0}^{\infty} \frac{(x + x\omega + x\omega^2)^{3n}}{(3n)!} \] Using the property \( 1 + \omega + \omega^2 = 0 \): \[ = e^{x(1 + \omega + \omega^2)} = e^0 = 1 \] ### Step 3: Find \( a + b\omega^2 + c\omega \) By symmetry, we find: \[ a + b\omega^2 + c\omega = 1 \] ### Step 4: Calculate \( a^3 + b^3 + c^3 - 3abc \) Using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a + b\omega + c\omega^2)(a + b\omega^2 + c\omega) \] Substituting the values we found: \[ = e^x \cdot 1 \cdot 1 = e^x \] ### Step 5: Evaluate at \( x = 0 \) To find the final answer, we evaluate at \( x = 0 \): \[ e^0 = 1 \] Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -

The value of Sigma_(n=1)^(3) tan^(-1)((1)/(n)) is

"Evaluate "Sigma_(n=1)^(6) (3+2^(n)).

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

If Sigma_(i=1)^(2n) cos^(-1) x_(i) = 0 ,then find the value of Sigma_(i=1)^(2n) x_(i)

"Evaluate Sigma_(n=1)^(11) (2+3^(n))

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |