Home
Class 12
MATHS
If S(n) denotes the sum of the products ...

If `S_(n)` denotes the sum of the products of the products of the first n natureal number taken two at a time

A

`(11e)/(24)`

B

`(11e)/(12)`

C

`(13e)/(24)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum \( S_n \) of the products of the first \( n \) natural numbers taken two at a time, we can follow these steps: ### Step 1: Understanding the Problem We need to find the sum of the products of the first \( n \) natural numbers taken two at a time. This means we want to calculate \( S_n = \sum_{1 \leq i < j \leq n} ij \). ### Step 2: Using the Identity We can use the identity: \[ (a + b + c + \ldots)^2 = a^2 + b^2 + c^2 + \ldots + 2(ab + ac + bc + \ldots) \] In our case, let \( a = 1, b = 2, c = 3, \ldots, n \). Therefore, we can express the square of the sum of the first \( n \) natural numbers as: \[ (1 + 2 + 3 + \ldots + n)^2 = \sum_{k=1}^{n} k^2 + 2S_n \] ### Step 3: Calculate the Sum of the First \( n \) Natural Numbers The sum of the first \( n \) natural numbers is given by: \[ 1 + 2 + 3 + \ldots + n = \frac{n(n + 1)}{2} \] Thus, \[ \left(\frac{n(n + 1)}{2}\right)^2 = \frac{n^2(n + 1)^2}{4} \] ### Step 4: Calculate the Sum of the Squares of the First \( n \) Natural Numbers The sum of the squares of the first \( n \) natural numbers is given by: \[ 1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6} \] ### Step 5: Set Up the Equation Substituting these results into our identity gives: \[ \frac{n^2(n + 1)^2}{4} = \frac{n(n + 1)(2n + 1)}{6} + 2S_n \] ### Step 6: Rearranging the Equation Rearranging the equation to isolate \( S_n \): \[ 2S_n = \frac{n^2(n + 1)^2}{4} - \frac{n(n + 1)(2n + 1)}{6} \] ### Step 7: Finding a Common Denominator The common denominator for the fractions on the right side is 12: \[ 2S_n = \frac{3n^2(n + 1)^2}{12} - \frac{2n(n + 1)(2n + 1)}{12} \] Combining these fractions gives: \[ 2S_n = \frac{3n^2(n + 1)^2 - 2n(n + 1)(2n + 1)}{12} \] ### Step 8: Simplifying the Numerator Now we simplify the numerator: \[ 3n^2(n + 1)^2 - 2n(n + 1)(2n + 1) = 3n^2(n^2 + 2n + 1) - 2n(2n^2 + 3n + 1) \] Expanding both terms: \[ = 3n^4 + 6n^3 + 3n^2 - (4n^3 + 6n^2 + 2n) = 3n^4 + 2n^3 - n^2 - 2n \] ### Step 9: Final Expression for \( S_n \) Thus, we have: \[ S_n = \frac{3n^4 + 2n^3 - n^2 - 2n}{24} \] ### Step 10: Conclusion The final expression for the sum \( S_n \) of the products of the first \( n \) natural numbers taken two at a time is: \[ S_n = \frac{n(n + 1)(n - 1)(3n + 2)}{24} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Find the sum of all possible products of the first n natural numbers taken two by two.

The S.D. of the first n natural numbers is

Find the sum of first n natural numbers.

Find the sum of first n natural numbers.

Find the sum of first n natural numbers.

Write the sum of first n odd natural numbers.

The variance of first n natural number is:

If P_(n) denotes the product of first n natural numbers, then for all n inN.

Write the sum of first n even natural numbers.

Write the sum of first n even natural numbers.

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |