Home
Class 12
MATHS
If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Si...

If `a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!)` then ab equals

A

1

B

`e^(2)`

C

`(e-1)/(e+1)`

D

`(e+1)/(e-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the product \( ab \) where: \[ a = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!} \] \[ b = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} \] ### Step 1: Calculate \( a \) We start with the series for \( a \): \[ a = \sum_{n=1}^{\infty} \frac{2n}{(2n-1)!} \] We can express \( 2n \) as \( 2n = (2n-1) + 1 \): \[ a = \sum_{n=1}^{\infty} \left( \frac{(2n-1)}{(2n-1)!} + \frac{1}{(2n-1)!} \right) \] This separates into two sums: \[ a = \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n-1)!} + \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} \] The first sum can be simplified: \[ \sum_{n=1}^{\infty} \frac{(2n-1)}{(2n-1)!} = \sum_{k=0}^{\infty} \frac{1}{k!} = e \] The second sum: \[ \sum_{n=1}^{\infty} \frac{1}{(2n-1)!} = \frac{1}{1!} + \frac{1}{3!} + \frac{1}{5!} + \ldots = \sinh(1) \] Thus, we can express \( a \) as: \[ a = e + \sinh(1) \] ### Step 2: Calculate \( b \) Now we calculate \( b \): \[ b = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} \] We can express \( 2n \) as \( 2n = (2n+1) - 1 \): \[ b = \sum_{n=1}^{\infty} \left( \frac{(2n+1)}{(2n+1)!} - \frac{1}{(2n+1)!} \right) \] This separates into two sums: \[ b = \sum_{n=1}^{\infty} \frac{1}{(2n)!} - \sum_{n=1}^{\infty} \frac{1}{(2n+1)!} \] The first sum can be simplified: \[ \sum_{n=0}^{\infty} \frac{1}{(2n)!} = \cosh(1) \] The second sum is: \[ \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} = \sinh(1) \] Thus, we can express \( b \) as: \[ b = \cosh(1) - \sinh(1) \] ### Step 3: Calculate \( ab \) Now we can find \( ab \): \[ ab = (e + \sinh(1))(\cosh(1) - \sinh(1)) \] Using the identity \( \cosh(1) - \sinh(1) = e^{-1} \): \[ ab = (e + \sinh(1)) e^{-1} \] This simplifies to: \[ ab = 1 \] ### Conclusion Thus, the final answer is: \[ ab = 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo) (2n)/(n!)=

sum_(n=1) ^(oo) (1)/((2n-1)!)=

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If S=Sigma_(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1

sum_(n=1)^(oo)(2 n^2+n+1)/((n!)) =

p=sum_(n=0)^(oo) (x^(3n))/((3n)!) , q=sum_(n=1)^(oo) (x^(3n-2))/((3n-2)!), r = sum_(n=1)^(oo) (x^(3n-1))/((3n-1)!) then p + q + r =

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |