Home
Class 12
MATHS
If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)...

If `S_(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))/(n!)` then
`lim_(n rarr infty) S_(n)` is equal to

A

3e

B

5e

C

7e

D

9e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit of the series given by \[ S_n = \sum_{k=1}^{n} \frac{k^2 (k+1)}{k!} \] as \( n \) approaches infinity. ### Step 1: Rewrite the Series The general term of the series can be expressed as: \[ \frac{k^2 (k+1)}{k!} = \frac{k^3 + k^2}{k!} \] Thus, we can separate the series into two parts: \[ S_n = \sum_{k=1}^{n} \frac{k^3}{k!} + \sum_{k=1}^{n} \frac{k^2}{k!} \] ### Step 2: Evaluate Each Series We will evaluate the two series separately. 1. **For the first series**: \[ \sum_{k=1}^{n} \frac{k^3}{k!} \] We can use the known result that: \[ \sum_{k=0}^{\infty} \frac{k^3}{k!} = e \] Therefore, as \( n \to \infty \): \[ \sum_{k=1}^{n} \frac{k^3}{k!} \to e \] 2. **For the second series**: \[ \sum_{k=1}^{n} \frac{k^2}{k!} \] Similarly, we have: \[ \sum_{k=0}^{\infty} \frac{k^2}{k!} = e \] Hence, as \( n \to \infty \): \[ \sum_{k=1}^{n} \frac{k^2}{k!} \to e \] ### Step 3: Combine the Results Now we can combine the results of both series: \[ S_n \to e + e = 2e \] ### Step 4: Find the Limit Finally, we find the limit as \( n \) approaches infinity: \[ \lim_{n \to \infty} S_n = 2e \] ### Conclusion Thus, the limit of \( S_n \) as \( n \) approaches infinity is: \[ \lim_{n \to \infty} S_n = 2e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

If t_(r)=(1^(2)+2^(2)+3^(2)+….+r^(2))/(1^(3)+2^(3)+3^(3)+…+r^(3)), S_(n)=sum_(r=1)^(n)(-1)^(r)t_(r) , then lim_(nrarroo)((1)/(3-S_(n)))=

If S_(n) = sum_(n=1)^(n) (2n + 1)/(n^(4) + 2n^(3) + n^(2)) then S_(10) is less then

Evaluate lim_(ntooo) (1)/(1+n^(2))+(2)/(2+n^(2))+...+(n)/(n+n^(2)).

f(n) = cot^2 (pi/n) + cot^2\ (2 pi)/n +...............+ cot^2\ ((n-1) pi)/n, ( n>1, n in N) then lim_(n rarr oo) f(n)/n^2 is equal to (A) 1/2 (B) 1/3 (C) 2/3 (D) 1

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

lim_(n rarr oo)((n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2)) + (n)/(n^(2)+3^(2))+......+(1)/(5n)) is equal to :

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |