Home
Class 12
MATHS
If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) ,...

If `S=Sigma_(n=0)^(oo) (logx)^(2n)/(2n!)` , then S equals

A

`x+x^(-1)`

B

`x-x^(-1)`

C

`1/2(x+x^(-1))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( S = \sum_{n=0}^{\infty} \frac{(\log x)^{2n}}{(2n)!} \), we can recognize that this series resembles the Taylor series expansion of the exponential function. ### Step-by-Step Solution: 1. **Identify the Series**: The given series can be rewritten as: \[ S = \sum_{n=0}^{\infty} \frac{(\log x)^{2n}}{(2n)!} \] This series includes only the even powers of \( \log x \). 2. **Use the Exponential Series**: The Taylor series expansion for \( e^x \) is: \[ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \] To get only the even terms, we can consider \( e^{\log x} \) and \( e^{-\log x} \). 3. **Combine the Exponential Functions**: The series for \( e^{\log x} \) and \( e^{-\log x} \) can be combined: \[ e^{\log x} + e^{-\log x} = x + \frac{1}{x} \] The even terms of the series expansion can be derived from: \[ e^x + e^{-x} = 2 \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} \] Hence, we have: \[ S = \frac{1}{2} \left( e^{\log x} + e^{-\log x} \right) = \frac{1}{2} \left( x + \frac{1}{x} \right) \] 4. **Final Result**: Therefore, we conclude that: \[ S = \frac{1}{2} \left( x + \frac{1}{x} \right) \] ### Conclusion: The final expression for \( S \) is: \[ S = \frac{1}{2} \left( x + \frac{1}{x} \right) \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

Sigma_(n=1)^(oo) (x^(2n))/(2n-1) is equal to

If a = Sigma_(n=1)^(oo) (2n)/(2n-1!),b=Sigma__(n=1)^(oo) (2n)/(2n+1!) then ab equals

If a=Sigma_(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma_(n=1)^(oo)(x^(3n-2))/(3n-2!) and C= Sigma_(n=1)^(oo)(x^(3n-1))/(3n-1!) then the value of a^(3)+b^(3)+C^(3)-3abc is

If S=sum_(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

sum_(n=1)^(oo) (2n)/(n!)=

The vlaue of the Sigma_(n=0)^(oo) (2n+3)/(3^n) is equal to ______.

If Sigma_(r=1)^(n) T_(r)=n(2n^(2)+9n+13) , then find the sum Sigma_(r=1)^(n)sqrt(T_(r)) .

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

Let a=Sigma_(n=0)^(oo) (x^(3n))/((3n))!, b =Sigma_(n=1)^(oo) (x^(3n-2))/(3n-2)! and C=Sigma_(n=1)^(oo) (x^(3n-1))/(3n-1)! and w be a complex cube root of unity Statement 1: a+b+c =e^(x),a+bw+cw^(2)=e^(wx) and a+bw^(2)+cw=e^(w^(2)) Statement 2: a^(3)+b^(3)+C^(3)-3abc=1

If a = Sigma_(n=0)^(oo) x^(n), b = Sigma_(n=0)^(oo) y^(n), c = Sigma__(n=0)^(oo) (xy)^(n) " Where " |x|, |y| lt 1 , then -

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |