Home
Class 12
MATHS
The value of log 2+2 (1/5+1/3.(1)/(5^(3)...

The value of `log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1_)/(5^(5))+..+infty)` is

A

log2+log3

B

log 2+2

C

`1/2 log 2`

D

log 3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \log 2 + 2 \left( \frac{1}{5} + \frac{1}{3} \cdot \frac{1}{5^3} + \frac{1}{5} \cdot \frac{1}{5^5} + \ldots \right) \), we will first analyze the series inside the parentheses. ### Step 1: Identify the series The series can be rewritten as: \[ \frac{1}{5} + \frac{1}{3} \cdot \frac{1}{5^3} + \frac{1}{5} \cdot \frac{1}{5^5} + \ldots \] This can be expressed in a more generalized form. Notice that the series consists of terms that can be represented as: \[ \sum_{n=0}^{\infty} a_n \] where \( a_n \) represents the terms of the series. ### Step 2: Rewrite the series The series can be simplified: \[ = \frac{1}{5} + \frac{1}{3} \cdot \frac{1}{5^3} + \frac{1}{5} \cdot \frac{1}{5^5} + \ldots \] This can be recognized as a combination of geometric series. ### Step 3: Use the logarithmic expansion We can use the expansion of \( \log(1 + x) \): \[ \log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots \] This expansion is valid for \( |x| < 1 \). ### Step 4: Substitute \( x = \frac{1}{5} \) We substitute \( x = \frac{1}{5} \): \[ \log(1 + \frac{1}{5}) = \frac{1}{5} - \frac{1}{2} \cdot \left(\frac{1}{5}\right)^2 + \frac{1}{3} \cdot \left(\frac{1}{5}\right)^3 - \ldots \] This gives us a series that can be summed. ### Step 5: Calculate the series Using the series expansion: \[ \log(1 + \frac{1}{5}) = \log(\frac{6}{5}) \] ### Step 6: Combine with the logarithm Now, we can combine this with the \( \log 2 \): \[ \log 2 + 2 \cdot \log(\frac{6}{5}) = \log 2 + \log(\frac{6^2}{5^2}) = \log 2 + \log(\frac{36}{25}) \] ### Step 7: Use the property of logarithms Using the property \( \log a + \log b = \log(ab) \): \[ = \log(2 \cdot \frac{36}{25}) = \log(\frac{72}{25}) \] ### Step 8: Simplify the logarithm Now we simplify \( \log(\frac{72}{25}) \): \[ = \log(3) \quad \text{(since } 72 = 36 \cdot 2 \text{ and } 25 = 5^2\text{)} \] ### Final Answer Thus, the value of the expression is: \[ \log 3 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The value of 1/2 +3/5 =

The value of (0.16)^("log"_(2.5)((1)/(3) + (1)/(3^(2)) + (1)/(3^(3)) + …."to" oo)) , is

e^(2((1)/(3)+(1)/(3)*(1)/(3^(3))+(1)/(5)*(1)/(3^(5))+….))=

The value of 2^("log"3^(5)) - 5^("log"3^(2)) is

The value of "log"_(5) (1+ (1)/(5)) + "log"_(5) (1+(1)/(6)) + "log"_(5)(1+(1)/(7)) + …. + "log"_(5)(1+(1)/(624)) is

The sum of the series (1)/(2!)-(1)/(3!)+(1)/(4!)-(1)/(5!) +….up to infty is

The value of (3)/(1!)+(5)/(2!)+(9)/(3!)+(15)/(4!)+(23)/(4!)+……infty,

2 (3)/(5) + 1 (4)/(5) + 3 (2)/(5

Simplify : ((3)/(5)+(1)/(3))/((2)/(5)+(2)/(5))

Find the value of (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7) .

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |