Home
Class 12
MATHS
e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4...

`e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......}` is eqaul to

A

`log(x-1)`

B

`logx`

C

x

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given: \[ e^{(x-1) - \frac{1}{2}(x-1)^2 + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \ldots} \] This expression can be recognized as the Taylor series expansion for the natural logarithm function. The series expansion for \(\log(1 + x)\) is given by: \[ \log(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \ldots \] ### Step 1: Identify the series In our case, we can see that the series matches the form of \(\log(1 + (x - 1))\) where \(x - 1\) is substituted for \(x\). Thus, we can rewrite the series as: \[ \log(1 + (x - 1)) = \log(x) \] ### Step 2: Substitute into the exponential function Now we have: \[ e^{(x-1) - \frac{1}{2}(x-1)^2 + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \ldots} = e^{\log(x)} \] ### Step 3: Simplify using properties of logarithms Using the property that \(e^{\log(a)} = a\), we can simplify this to: \[ e^{\log(x)} = x \] ### Conclusion Thus, the expression simplifies to: \[ e^{(x-1) - \frac{1}{2}(x-1)^2 + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \ldots} = x \] ### Final Answer The final answer is: \[ \boxed{x} \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

(x-1)^4+4(x-1)^3+6(x-1)^2+4 (x-1)+1 = ?

(3x^(2)+x+1)/(x-1)^(4)=a/(x-1)+b/(x-1)^(2)+c/(x-1)^(3)+d/(x-1)^(4) rArr [{:(a,b), (c, d):}]=

If x is positive, the sum to infinity of the series 1/(1+x)-(1-x)/((1+x)^2)+(1-x) ^2/((1+x)^3)-(1-x)^3/((1+x)^4)+....... i s (a)1/2 (b) 3/4 (c) 1 (d) none of these

(2x - 1/2)(3x/2 - 1/4)

(3x^(2)+x+1)/((x-1)^(4))=(A)/(x-1)+(B)/((x-1)^(2))+(C)/((x-1)^(3))+(D)/((x-1)^(4)) then A+B-C+D=

int1/(x^2(x^4+1)^(3/4))dx

("lim")_(xvec1)((x^4+x^2+x+1)/(x^2-x+1))^(1-"cos"(x+1))/((x+1)^(2))i se q u a lto 1 (b) (2/3)^(1/2) (c) (3/2)^(1/2) (d) e^(1/2)

Assertion (A) : The coefficient of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

int1/(x^2(x^4+1)^(3/4)) dx

lim_(xrarr0) (1)/(x^(2))|(1-cos3x,log_(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(-1)(2x))| is equal to

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |