Home
Class 12
MATHS
log4 2-log8 2+log16 2-.....oo...

`log_4 2-log_8 2+log_16 2-.....oo`

A

`e^(-2)`

B

`log_(e)2+1`

C

`log_(e)3-2`

D

`1-log_(e)2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question \( \log_4 2 - \log_8 2 + \log_{16} 2 - \ldots \) up to infinity, we will follow these steps: ### Step 1: Rewrite the logarithms in terms of base 2 Using the change of base formula, we can express the logarithms in terms of base 2: \[ \log_4 2 = \frac{\log_2 2}{\log_2 4} = \frac{1}{2}, \quad \log_8 2 = \frac{\log_2 2}{\log_2 8} = \frac{1}{3}, \quad \log_{16} 2 = \frac{\log_2 2}{\log_2 16} = \frac{1}{4} \] Thus, the series can be rewritten as: \[ \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \ldots \] ### Step 2: Identify the pattern in the series The series can be expressed as: \[ \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n} \] This is an alternating series. ### Step 3: Relate the series to the logarithmic expansion The series \( \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \log(2) \). Therefore, we can express our series in terms of this known series: \[ \frac{1}{2} - \left( \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots \right) \] The series \( \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \ldots \) can be rewritten as: \[ -\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \ldots \right) = -(\log(2) - 1) \] ### Step 4: Combine the results Thus, we have: \[ \frac{1}{2} - (-(\log(2) - 1)) = \frac{1}{2} + \log(2) - 1 \] This simplifies to: \[ \log(2) - \frac{1}{2} + 1 = \log(2) + \frac{1}{2} \] ### Step 5: Final expression The final expression can be simplified to: \[ 1 - \log(2) \] ### Conclusion The value of the infinite series \( \log_4 2 - \log_8 2 + \log_{16} 2 - \ldots \) is: \[ 1 - \log_2 e \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|20 Videos
  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|5 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series "log"_(4)2-"log"_(8)2 + "log"_(16)2- "log"_(32) 2+…., is

Solve for x, y , z . log_2 x + log_4 y + log_4 z =2 log_3 y + log_9 z + log_9 x =2 log_4 z + log_16 x + log_16 y =2

Find x, if : 2 + log x = log 45 - log 2 + log 16 - 2 log 3.

Whenever a,b, and c are positive real numbers, which of the following expressions is equivalent to log_4 u-2 log_8 b+1/2 log_4 c ?

log4^2_10 + log4_10

If lot 7- log 2 + log 16 - 2 log3 - log "" (7)/(45)= 1 + log k, find the value of k.

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

If "log"_(e) 2."log"_(x) 27 = "log"_(10) 8."log"_(e) 10 , then x =

Prove that log_2log_2log_(2) 16 =1

If "log"_(4) 2 + "log"_(4) 4 + "log"_(4) 16 + "log"_(4) x = 6 , then x =

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Exercise
  1. If y=2x^(2)-1 then (1)/(x^(2))+(1)/(2x^(4))+(1)/(3x^(6))+…infty equals...

    Text Solution

    |

  2. The sum of sum(n=1)^(oo) ""^(n)C(2) . (3^(n-2))/(n!) equal

    Text Solution

    |

  3. If (e^(x))/(1-x) = B(0) +B(1)x+B(2)x^(2)+...+B(n)x^(n)+... , then the ...

    Text Solution

    |

  4. IfS=Sigma(n=1)^(oo) (""^(n)C(0)+""^(n)C(1)+""^(n)c(2)+..+""^(n)C(n))/(...

    Text Solution

    |

  5. If S=sum(n=2)^(oo) (3n^2+1)/((n^2-1)^3) then 9/4Sequals

    Text Solution

    |

  6. 1/(1.2)+(1.3)/(1.2.3.4)+(1.3.5)/(1.2.3.4.5.6)+.....oo

    Text Solution

    |

  7. The sum of the series (12)/(2!)+(28)/(3!)+(50)/(4!)+(78)/(5!)+…is

    Text Solution

    |

  8. If a=Sigma(n=0)^(oo) (x^(3x))/(3n)!,b=Sigma(n=1)^(oo)(x^(3n-2))/(3n-2!...

    Text Solution

    |

  9. If S(n) denotes the sum of the products of the products of the first n...

    Text Solution

    |

  10. sum(n=0)^oo (loge x)^n/(n!) is equal to

    Text Solution

    |

  11. If a = Sigma(n=1)^(oo) (2n)/(2n-1!),b=Sigma(n=1)^(oo) (2n)/(2n+1!) the...

    Text Solution

    |

  12. The value of (1+(a^(2)x^(2))/(2!)+(a^(4)x^(4))/(4!)+…)^(2)-(ax+(a^(3...

    Text Solution

    |

  13. If S(n)=(1^(2).(2))/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+…(n^(2).(n+1))...

    Text Solution

    |

  14. If S=Sigma(n=0)^(oo) (logx)^(2n)/(2n!) , then S equals

    Text Solution

    |

  15. If y+(y^(3))/(3)+(Y^(5))/(5)+…infty=2(x+(x^(3))/(3)+(x^(5))/(5)+..inft...

    Text Solution

    |

  16. The value of log 2+2 (1/5+1/3.(1)/(5^(3))+1/5.(1)/(5^(5))+..+infty) is

    Text Solution

    |

  17. The sum of series (1)/(1.2) -(1)/(2.3) + (1)/(3.4) - (1)/(4.5) + …...

    Text Solution

    |

  18. e^{(x-1)-1/2(x-1)^2+((x-1)^3)/3-(x-1)^(4)/4+......} is eqaul to

    Text Solution

    |

  19. 2{(m-n)/(m+n)+1/3((m-n)/(m+n))^(3)+1/5((m-n)/(m+n))^(5)+..} is equals ...

    Text Solution

    |

  20. log4 2-log8 2+log16 2-.....oo

    Text Solution

    |