Home
Class 11
MATHS
A rectangle with sides 2m-1a n d2n-1 is ...

A rectangle with sides `2m-1a n d2n-1` is divided into squares of unit length by drawing parallel lines as shown in the diagram, then the number of rectangles possible with odd side lengths is fig a.`(m+n-1)^2` b. `4^(m+n-1)` c. `m^2n^2` d. `m(m+1)n(n+1)`

A

`m^(2)n^(2)`

B

`mn(m+1)(n+1)`

C

`4^(m+n-1)`

D

none of these

Text Solution

Verified by Experts

Clearly,
Number of horizontal rectangles of 1 units length `=(2m-1)`
Number of horizontal rectangles of 3 unit length `=(2m-3)`
Number of horizontal rectangles of 5 unit length `=(2m-5)`
Similarly,
Number of rectangles of `(2m-1)` unit length =1
`:.` Total number of horizontal rectangles of odd length
`=(2m-1)+(2m-3)+....+3+1=m^(2)`

Similarly
Total number vertical rectangles of odd length `=n^(2)`
`:.` Total numbr of rectangles `=m^(2)xxn^(2)`
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|111 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|9 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

A rectangle with sides of lengths (2n-1) and (2m-1) units is divided into squares of unit length. The number of rectangles which can be formed with sides of odd length, is (a) m^2n^2 (b) mn(m+1)(n+1) (c) 4^(m+n-1) (d) non of these

There is a rectangular sheet of dimension (2m-1)xx(2n-1) , (where m > 0, n > 0 ) It has been divided into square of unit area by drawing line perpendicular to the sides. Find the number of rectangles having sides of odd unit length.

If m parallel lines in a plane are intersected by a family of n parallel lines, the number of parallelograms that can be formed is a. 1/4m n(m-1)(n-1) b. 1/4m n(m-1) c. 1/4m^2n^2 d. none of these

Is it possible to draw a triangle with sides of length 2c m ,\ 3c m\ a n d\ 7c m ?

Find the sum of the possible integer values of m: 2m+n=10 m(n-1)=9

A B C is a right-angled triangle in which /_B=90^0 and B C=adot If n points L_1, L_2, ,L_nonA B is divided in n+1 equal parts and L_1M_1, L_2M_2, ,L_n M_n are line segments parallel to B Ca n dM_1, M_2, ,M_n are on A C , then the sum of the lengths of L_1M_1, L_2M_2, ,L_n M_n is (a(n+1))/2 b. (a(n-1))/2 c. (a n)/2 d. none of these

Straight lines are drawn by joining m points on a straight line of n points on another line. Then excluding the given points, the number of point of intersections of the lines drawn is (no tow lines drawn are parallel and no these lines are concurrent). a. 4m n(m-1)(n-1) b. 1/2m n(m-1)(n-1) c. 1/2m^2n^2 d. 1/4m^2n^2

If n >1 , the value of the positive integer m for which n^m+1 divides a=1+n+n^2+ddot+n^(63) is/are a. 8 b. 16 c. 32 d. 64

2m white counters and 2n red counters are arranged in a straight line with (m+n) counters on each side of central mark. The number of ways of arranging the counters, so that the arrangements are symmetrical with respect to the central mark is (A) .^(m+n)C_m (B) .^(2m+2n)C_(2m) (C) 1/2 ((m+n)!)/(m! n!) (D) None of these

If \ ^m C_1=\ \ ^n C_2 then which is correct a. 2m=n b. 2m=n(n+1) c. 2m=(n-1) d. 2n=m(m-1)

OBJECTIVE RD SHARMA ENGLISH-PERMUTATIONS AND COMBINATIONS-Chapter Test
  1. A rectangle with sides 2m-1a n d2n-1 is divided into squares of uni...

    Text Solution

    |

  2. 7 women and 7 men are to sit round a circulartable such that there is ...

    Text Solution

    |

  3. There are (n+1) white and (n+1) black balls, each set numbered 1ton...

    Text Solution

    |

  4. 12 persons are to be arranged to a round table. If two particular pers...

    Text Solution

    |

  5. The number of committees of 5 persons consisting of at least one femal...

    Text Solution

    |

  6. The number of ways in which a team of eleven players can be selected f...

    Text Solution

    |

  7. In a football championship, 153 matches were played. Every two-team pl...

    Text Solution

    |

  8. How many numbers between 5000 and 10,000 can be formed using the digit...

    Text Solution

    |

  9. If x, y and r are positive integers, then ""^(x)C(r)+""^(x)C(r-1)+""^(...

    Text Solution

    |

  10. In how many ways can 5 red and 4 white balls be drawn from a bag conta...

    Text Solution

    |

  11. All the letters of the word 'EAMCET' are arranged in all possible ways...

    Text Solution

    |

  12. There are 10 lamps in a hall. Each one of them can be switched on i...

    Text Solution

    |

  13. How many 10-digit numbers can be formed by using digits 1 and 2

    Text Solution

    |

  14. The straight lines I(1),I(2),I(3) are parallel and lie in the same pla...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The number of diagonals that can be drawn by joining the vertices of a...

    Text Solution

    |

  17. The sum of the digits in unit place of all the numbers formed with the...

    Text Solution

    |

  18. In an examinations there are three multiple choice questions and each ...

    Text Solution

    |

  19. There are 10 points in a plane, out of these 6 are collinear. If N is ...

    Text Solution

    |

  20. Ramesh has 6 friends. In how many ways can be invite one or more of th...

    Text Solution

    |

  21. If Pm stands for ^m Pm , then prove that: 1+1. P1+2. P2+3. P3++ndotPn=...

    Text Solution

    |