r

A

4

B

5

C

6

D

7

Text Solution

Verified by Experts

All five girls can stand consecutively in a queue in 5! Ways. Considering these five girls as an individual and mixing up with 5 boys there are 6 individuals who can stand in a queue in 6! Ways. Therefore, `n=5!xx6!`
In order to find the number of ways in which exactly four girls stand consecutively. Let us first choose 4 girls out of 5. This can be done in `""^(5)C_(4)` ways. These 4 girls can stand in a queue in 4! ways. Now, consider these 4 girls as an individual and mix-up with remaining one girl and 5 boys. In this manner we obtain 7 persons which can be arrange in a row in 7! ways.
Thus.
number of ways in which four girls stand consecutively in a queue `""^(5)C_(4)xx4!xx7!`.
These ways also include the ways in which all five girls stand consecutively in a queue the number of such ways is `2(""^(5)C_(4)xx4!xx6!)`
`:.` Number of ways also include which exactly 4 girls stand is a queue is `""^(5)C_(4)xx4!xx7!-2(""^(5)C_(4)xx4!xx6)`.
i.e. `m=""^(5)C_(4)xx4!xx7!-2(""^(5)C_(4)xx4!xx6!)=""^(5)C_(4)xx4!xx6!xx5=5xx5!xx6!`
`:.(m)/(n)=(5xx5!xx6!)/(5!xx6!)=5`.
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|111 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|9 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

Let ABC be a triangle with incentre I and inradius r. Let D, E, F be the feet of the perpendiculars from I to the sides BC, CA and AB, respectively, If r_(2)" and "r_(3) are the radii of circles inscribed in the quadrilaterls AFIE, BDIF and CEID respectively, then prove that r_(1)/(r-r_(1))+r_(2)/(r-r_(2))+r_(3)/(r-r_(3))=(r_(1)r_(2)r_(3))/((r-r_(1))(r-r_(2))(r-r_(3)))

Let there be a spherical symmetric charge density varying as p(r )=p_(0)(r )/(R ) upto r = R and rho(r )=0 for r gt R , where r is the distance from the origin. The electric field at on a distance r(r lt R) from the origin is given by -

A satellite of mass m orbits the earth in an elliptical orbit having aphelion distance r_(a) and perihelion distance r_(p) . The period of the orbit is T. The semi-major and semi-minor axes of the ellipse are (r_(a) + r_(p))/(2) and sqrt(r_(p)r_(a)) respectively. The angular momentum of the satellite is: (A) (2m pi (r_(B)+r_(p)) sqrt(r_(a) r_(p)))/T (B) (m pi (r_(a)+r_(p)) sqrt(r_(a) r_(p)))/(2T) (C) (m pi (r_(a)+r_(p)) sqrt(r_(a)r_(p)))/(4T) (D) (mpi (r_(a)+r_(p)) sqrt(r_(a)r_(p)))/T

Two circle of radii R and r ,R > r touch each other externally then the radius of circle which touches both of them externally and also their direct common tangent, is R (b) (R r)/(R+r) (R r)/((sqrt(R)+sqrt(r))^2) (d) (R r)/((sqrt(R)-sqrt(r))^2)

Two resistance R_(1) and R_(2) are made of different material. The temperature coefficient of the material of R_(1) is alpha and of the material of R_(2) is -beta . Then resistance of the series combination of R_(1) and R_(2) will not change with temperature, if R_(1)//R_(2) will not change with temperature if R_(1)//R_(2) equals

Two resistance R_(1) and R_(2) are made of different material. The temperature coefficient of the material of R_(1) is alpha and of the material of R_(2) is -beta . Then resistance of the series combination of R_(1) and R_(2) will not change with temperature, if R_(1)//R_(2) will not change with temperature if R_(1)//R_(2) equals

Let A B C be a triangle with incenter I and inradius rdot Let D ,E ,a n dF be the feet of the perpendiculars from I to the sides B C ,C A ,a n dA B , respectively. If r_1,r_2a n dr_3 are the radii of circles inscribed in the quadrilaterals A F I E ,B D I F ,a n dC E I D , respectively, prove that (r_1)/(r-1_1)+(r_2)/(r-r_2)+(r_3)/(r-r_3)=(r_1r_2r_3)/((r-r_1)(r-r_2)(r-r_3))

Two resistors of resistances R_(1)=100 pm 3 ohm and R_(2)=200 pm 4 ohm are connected (a) in series, (b) in parallel. Find the equivalent resistance of the (a) series combination, (b) parallel combination. Use for (a) the relation R=R_(1)+R_(2) and for (b) 1/(R')=1/R_(1)+1/R_(2) and (Delta R')/R'^(2)=(Delta R_(1))/R_(1)^(2)+(Delta R_(2))/R_(2)^(2)

The mass density of a spherical body is given by rho(r)=k/r for r le R and rho (r)=0 for r > R , where r is the distance from the centre. The correct graph that describes qualitatively the acceleration, a, of a test particle as a function of r is :

Three circles with radius r_(1), r_(2), r_(3) touch one another externally. The tangents at their point of contact meet at a point whose distance from a point of contact is 2 . The value of ((r_(1)r_(2)r_(3))/(r_(1)+r_(2)+r_(3))) is equal to

OBJECTIVE RD SHARMA ENGLISH-PERMUTATIONS AND COMBINATIONS-Chapter Test
  1. r

    Text Solution

    |

  2. 7 women and 7 men are to sit round a circulartable such that there is ...

    Text Solution

    |

  3. There are (n+1) white and (n+1) black balls, each set numbered 1ton...

    Text Solution

    |

  4. 12 persons are to be arranged to a round table. If two particular pers...

    Text Solution

    |

  5. The number of committees of 5 persons consisting of at least one femal...

    Text Solution

    |

  6. The number of ways in which a team of eleven players can be selected f...

    Text Solution

    |

  7. In a football championship, 153 matches were played. Every two-team pl...

    Text Solution

    |

  8. How many numbers between 5000 and 10,000 can be formed using the digit...

    Text Solution

    |

  9. If x, y and r are positive integers, then ""^(x)C(r)+""^(x)C(r-1)+""^(...

    Text Solution

    |

  10. In how many ways can 5 red and 4 white balls be drawn from a bag conta...

    Text Solution

    |

  11. All the letters of the word 'EAMCET' are arranged in all possible ways...

    Text Solution

    |

  12. There are 10 lamps in a hall. Each one of them can be switched on i...

    Text Solution

    |

  13. How many 10-digit numbers can be formed by using digits 1 and 2

    Text Solution

    |

  14. The straight lines I(1),I(2),I(3) are parallel and lie in the same pla...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. The number of diagonals that can be drawn by joining the vertices of a...

    Text Solution

    |

  17. The sum of the digits in unit place of all the numbers formed with the...

    Text Solution

    |

  18. In an examinations there are three multiple choice questions and each ...

    Text Solution

    |

  19. There are 10 points in a plane, out of these 6 are collinear. If N is ...

    Text Solution

    |

  20. Ramesh has 6 friends. In how many ways can be invite one or more of th...

    Text Solution

    |

  21. If Pm stands for ^m Pm , then prove that: 1+1. P1+2. P2+3. P3++ndotPn=...

    Text Solution

    |