Home
Class 11
MATHS
Statement-1: The expression ""^(40)C(r...

Statement-1: The expression
`""^(40)C_(r)xx""^(60)C_(0)+""^(40)C_(r-1)xx""^(60)C_(1)+""^(40)C_(r-2)xx""^(60)C_(2)+....` attains its maximum volue when r = 50
Statement-2: `""^(2n)C_(r)` is maximum when r=n.

A

Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C

Statement-1 is True, Statement-2 is False.

D

Statement-1 is False, Statement-2 is True.

Text Solution

AI Generated Solution

To solve the problem, we will analyze both statements provided in the question step by step. ### Step 1: Understanding Statement 1 The expression given in Statement 1 is: \[ \binom{40}{r} \cdot \binom{60}{0} + \binom{40}{r-1} \cdot \binom{60}{1} + \binom{40}{r-2} \cdot \binom{60}{2} + \ldots \] This expression represents a sum of products of binomial coefficients. Each term in the expression can be interpreted as choosing \( r \) objects from a total of \( 100 \) objects (40 from one group and 60 from another). ...
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|136 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|111 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Statement-1 : The expression n!(100 - n)! is maximum when n = 50 . Statement-2 : .^(2n)C_(r) is maximum when r = n .

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

""^(n)C_(n-r)+3.""^(n)C_(n-r+1)+3.""^(n)C_(n-r+2)+""^(n)C_(n-r+3)=""^(x)C_(r)

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

Statement -1: The expression n!(20-n)! is minimum when n=10 . because Statement -2: .^(2p)C_(r) is maximum when r=p .