Home
Class 11
MATHS
Given A = {x : (pi)/(6) le x le (pi)/( 3...

Given `A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+ x )`. Find ` f (A)`.

A

`[pi//6,pi//3]`

B

`[-pi//3,pi-6]`

C

`[(1)/(2)-(pi)/(3)(1+(pi)/(3)),(sqrt3)/(2)-(pi)/(6)(1+(pi)/(6))]`

D

`[(1)/(2)+(pi)/(3)(1-(pi)/(3)),(sqrt3)/(2)+(pi)/(6)(1-(pi)/(6))]`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f(A) \) where \( A = \{ x : \frac{\pi}{6} \leq x \leq \frac{\pi}{3} \} \) and \( f(x) = \cos x - x(1 + x) \), we will follow these steps: ### Step 1: Rewrite the function The function can be rewritten as: \[ f(x) = \cos x - x - x^2 \] ### Step 2: Find the derivative To determine the behavior of the function, we need to find its derivative: \[ f'(x) = -\sin x - (1 + 2x) \] This derivative will help us understand whether the function is increasing or decreasing in the interval. ### Step 3: Analyze the derivative Since \( \sin x \) is positive in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \), we can conclude that \( -\sin x \) is negative. Therefore, \( f'(x) \) is negative because: \[ f'(x) = -\sin x - (1 + 2x) < 0 \] This means that \( f(x) \) is a decreasing function in the interval \( \left[\frac{\pi}{6}, \frac{\pi}{3}\right] \). ### Step 4: Evaluate the function at the endpoints Since the function is decreasing, we will find the maximum value at \( x = \frac{\pi}{6} \) and the minimum value at \( x = \frac{\pi}{3} \). 1. **Calculate \( f\left(\frac{\pi}{6}\right) \)**: \[ f\left(\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right) - \frac{\pi}{6}\left(1 + \frac{\pi}{6}\right) \] \[ = \frac{\sqrt{3}}{2} - \frac{\pi}{6} - \frac{\pi^2}{36} \] 2. **Calculate \( f\left(\frac{\pi}{3}\right) \)**: \[ f\left(\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right) - \frac{\pi}{3}\left(1 + \frac{\pi}{3}\right) \] \[ = \frac{1}{2} - \frac{\pi}{3} - \frac{\pi^2}{9} \] ### Step 5: Determine the range Since \( f(x) \) is decreasing, the maximum value of \( f(A) \) will be at \( f\left(\frac{\pi}{6}\right) \) and the minimum value will be at \( f\left(\frac{\pi}{3}\right) \). Thus, the range of \( f(A) \) is: \[ f(A) = \left[ f\left(\frac{\pi}{3}\right), f\left(\frac{\pi}{6}\right) \right] \] ### Final Result The final result for \( f(A) \) is: \[ f(A) = \left[ \frac{1}{2} - \frac{\pi}{3} - \frac{\pi^2}{9}, \frac{\sqrt{3}}{2} - \frac{\pi}{6} - \frac{\pi^2}{36} \right] \]

To find \( f(A) \) where \( A = \{ x : \frac{\pi}{6} \leq x \leq \frac{\pi}{3} \} \) and \( f(x) = \cos x - x(1 + x) \), we will follow these steps: ### Step 1: Rewrite the function The function can be rewritten as: \[ f(x) = \cos x - x - x^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If A={x:(pi)/(6) lt x lt (pi)/(3)} and f(x) =cosx-x(1+x), then f(A) is equal to :

If A={x : x in R, (-pi)/(2) le x le (pi)/(2)}, B={y : y in R, -1 le y le 1} , then show that the function f: A to B defined as f(x)=sin x , x in A is one-one onto function.

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

Let f(x) = {{:( x^(3) + x^(2) - 10 x ,, -1 le x lt 0) , (sin x ,, 0 le x lt x//2) , (1 + cos x ,, pi //2 le x le x ):} then f(x) has

If 0 le x, y le 2 pi "and cos"x + "cos" y = -2, " then "cos" (x+y)=

Let f(x)=min{1,cos x,1-sinx}, -pi le x le pi , Then, f(x) is

Find the area bounded by the following curve : (i) f(x) = sinx, g(x) = sin^(2)x, 0 le x le 2pi (ii) f(x) = sinx, g(x) = sin^(4)x, 0 le x le 2pi

Let A={x-1 le x le 1} and f:A to A such that f(x)=x|x| then f is:

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Given A = {x : (pi)/(6) le x le (pi)/( 3)} and f(x) = cos x - x ( 1+...

    Text Solution

    |

  2. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  3. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  4. The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=s in^(...

    Text Solution

    |

  5. Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)...

    Text Solution

    |

  6. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  7. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) , where m!=n...

    Text Solution

    |

  8. Find the inverse of the function: f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2

    Text Solution

    |

  9. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  10. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  11. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  12. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  13. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  14. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  15. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  16. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  17. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  18. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  19. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  20. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  21. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |