Home
Class 11
MATHS
If f(x)=ax^2+bx+c and g(x)=px^2+qx with ...

If `f(x)=ax^2+bx+c` and `g(x)=px^2+qx` with `g(1)=f(1)` , `g(2)-f(2)=1`and `g(3)-f(3)=4` then `g(4)-f(4)` is

A

0

B

5

C

6

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given functions and the conditions provided. ### Given: 1. \( f(x) = ax^2 + bx + c \) 2. \( g(x) = px^2 + qx \) 3. \( g(1) = f(1) \) 4. \( g(2) - f(2) = 1 \) 5. \( g(3) - f(3) = 4 \) ### Step 1: Set up the equations based on the conditions **Condition 1: \( g(1) = f(1) \)** Calculating \( f(1) \) and \( g(1) \): \[ f(1) = a(1)^2 + b(1) + c = a + b + c \] \[ g(1) = p(1)^2 + q(1) = p + q \] Setting them equal gives us: \[ a + b + c = p + q \quad \text{(Equation 1)} \] **Condition 2: \( g(2) - f(2) = 1 \)** Calculating \( f(2) \) and \( g(2) \): \[ f(2) = a(2)^2 + b(2) + c = 4a + 2b + c \] \[ g(2) = p(2)^2 + q(2) = 4p + 2q \] Setting up the equation: \[ (4p + 2q) - (4a + 2b + c) = 1 \] This simplifies to: \[ 4p + 2q - 4a - 2b - c = 1 \quad \text{(Equation 2)} \] **Condition 3: \( g(3) - f(3) = 4 \)** Calculating \( f(3) \) and \( g(3) \): \[ f(3) = a(3)^2 + b(3) + c = 9a + 3b + c \] \[ g(3) = p(3)^2 + q(3) = 9p + 3q \] Setting up the equation: \[ (9p + 3q) - (9a + 3b + c) = 4 \] This simplifies to: \[ 9p + 3q - 9a - 3b - c = 4 \quad \text{(Equation 3)} \] ### Step 2: Rewrite the equations From Equation 1: \[ p + q = a + b + c \quad \text{(Rearranging gives us \( p - a + q - b - c = 0 \))} \] Let: \[ A = p - a, \quad B = q - b \] Then: \[ A + B - c = 0 \quad \text{(Equation 4)} \] ### Step 3: Substitute \( A \) and \( B \) into Equations 2 and 3 **From Equation 2:** \[ 4A + 2B - c = 1 \quad \text{(Equation 5)} \] **From Equation 3:** \[ 9A + 3B - c = 4 \quad \text{(Equation 6)} \] ### Step 4: Solve the equations **Subtract Equation 5 from Equation 6:** \[ (9A + 3B - c) - (4A + 2B - c) = 4 - 1 \] This simplifies to: \[ 5A + B = 3 \quad \text{(Equation 7)} \] Now, we can express \( B \) in terms of \( A \): \[ B = 3 - 5A \quad \text{(Equation 8)} \] **Substituting Equation 8 into Equation 5:** \[ 4A + 2(3 - 5A) - c = 1 \] This simplifies to: \[ 4A + 6 - 10A - c = 1 \] \[ -6A - c + 6 = 1 \] \[ -6A - c = -5 \quad \Rightarrow \quad c = -6A + 5 \quad \text{(Equation 9)} \] ### Step 5: Substitute \( A \) and \( B \) back into Equation 4 Using Equation 4: \[ A + (3 - 5A) - (-6A + 5) = 0 \] This simplifies to: \[ A + 3 - 5A + 6A - 5 = 0 \] \[ 2A - 2 = 0 \quad \Rightarrow \quad A = 1 \] ### Step 6: Find \( B \) and \( c \) Substituting \( A = 1 \) into Equation 8: \[ B = 3 - 5(1) = -2 \] Substituting \( A = 1 \) into Equation 9: \[ c = -6(1) + 5 = -1 \] ### Step 7: Find \( g(4) - f(4) \) Now we can find \( g(4) - f(4) \): \[ g(4) - f(4) = 16A + 4B - c \] Substituting the values: \[ = 16(1) + 4(-2) - (-1) \] \[ = 16 - 8 + 1 = 9 \] ### Final Answer: \[ g(4) - f(4) = 9 \]

To solve the problem step by step, we will analyze the given functions and the conditions provided. ### Given: 1. \( f(x) = ax^2 + bx + c \) 2. \( g(x) = px^2 + qx \) 3. \( g(1) = f(1) \) 4. \( g(2) - f(2) = 1 \) 5. \( g(3) - f(3) = 4 \) ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=

If f(x)=3x-sqrtx and g(x)=x^(2) , what is f(g(4)) ?

If f(x)=3x-sqrtx and g(x)=x^(2) , what is g(f(4)) ?

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

If f(x)=4x-5 and g(x)=3^(x) , then f(g(2)) =

If f(x)=2x^(3) and g(x)=3x , what is the value of g(f(-2))-f(g(-2)) ?

If g(x) = 2x^(2) + 3x - 4 and g (f(x)) = 8x^(2) + 14 x + 1 then f (2) =

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. If f(x)=ax^2+bx+c and g(x)=px^2+qx with g(1)=f(1) , g(2)-f(2)=1and g(...

    Text Solution

    |

  2. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  3. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  4. The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=s in^(...

    Text Solution

    |

  5. Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)...

    Text Solution

    |

  6. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  7. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) , where m!=n...

    Text Solution

    |

  8. Find the inverse of the function: f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2

    Text Solution

    |

  9. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  10. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  11. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  12. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  13. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  14. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  15. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  16. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  17. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  18. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  19. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  20. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  21. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |