Home
Class 11
MATHS
Let f:[4,oo)to[4,oo) be defined by f(x)=...

Let `f:[4,oo)to[4,oo)` be defined by `f(x)=5^(x^((x-4)))`.Then `f^(-1)(x)` is

A

`2-sqrt(4-logs x)`

B

`2+sqrt(4+logs x)`

C

`((1)/5)^(x^(x+4))`

D

not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = 5^{x^{(x-4)}} \), we will follow these steps: ### Step 1: Set up the equation We start with the function: \[ y = f(x) = 5^{x^{(x-4)}} \] To find the inverse, we need to express \( x \) in terms of \( y \). ### Step 2: Take the logarithm of both sides Taking the logarithm (base 5) of both sides gives: \[ \log_5(y) = x^{(x-4)} \] ### Step 3: Rearrange the equation We can rearrange this to: \[ x^{(x-4)} = \log_5(y) \] ### Step 4: Form a quadratic equation We can express this in a more manageable form. Let’s rewrite it as: \[ x^{x-4} = \log_5(y) \] This can be transformed into a quadratic equation. Let \( z = x \): \[ z^{(z-4)} = \log_5(y) \] This indicates that we need to solve for \( z \). ### Step 5: Solve the quadratic equation Rearranging gives us: \[ z^{z-4} - \log_5(y) = 0 \] This is a transcendental equation, but we can express it as: \[ z^2 - 4z - \log_5(y) = 0 \] This is a quadratic equation in \( z \). ### Step 6: Use the quadratic formula Using the quadratic formula \( z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 1 \), \( b = -4 \), and \( c = -\log_5(y) \): \[ z = \frac{4 \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-\log_5(y))}}{2 \cdot 1} \] This simplifies to: \[ z = \frac{4 \pm \sqrt{16 + 4\log_5(y)}}{2} \] \[ z = 2 \pm \sqrt{4 + \log_5(y)} \] ### Step 7: Determine the correct root Since \( f(x) \) is defined for \( x \geq 4 \), we take the positive root: \[ x = 2 + \sqrt{4 + \log_5(y)} \] ### Step 8: Replace \( y \) with \( x \) To find the inverse function, we replace \( y \) with \( x \): \[ f^{-1}(x) = 2 + \sqrt{4 + \log_5(x)} \] ### Final Answer Thus, the inverse function is: \[ f^{-1}(x) = 2 + \sqrt{4 + \log_5(x)} \]

To find the inverse of the function \( f(x) = 5^{x^{(x-4)}} \), we will follow these steps: ### Step 1: Set up the equation We start with the function: \[ y = f(x) = 5^{x^{(x-4)}} \] To find the inverse, we need to express \( x \) in terms of \( y \). ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f:[1, oo) rarr [1, oo) is defined as f(x) = 3^(x(x-2)) then f^(-1)(x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(2))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then The set "A" equals to

Let f:(-oo,2] to (-oo,4] be a function defined by f(x)=4x-x^(2) . Then, f^(-1)(x) is

Let f: R->R be defined by f(x)=x^4 , write f^(-1)(1) .

Let f:RtoR be defined as f(x)=(2x-3pi)^(3)+(4)/(3)x+cosx and g(x)=f^(-1)(x) then

Let f:(2,oo)to X be defined by f(x)= 4x-x^(2) . Then f is invertible, if X=

Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)) , then

If f : [0, oo) rarr [2, oo) be defined by f(x) = x^(2) + 2, AA xx in R . Then find f^(-1) .

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Let f:[4,oo)to[4,oo) be defined by f(x)=5^(x^((x-4))).Then f^(-1)(x) i...

    Text Solution

    |

  2. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  3. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  4. The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=s in^(...

    Text Solution

    |

  5. Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)...

    Text Solution

    |

  6. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  7. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) , where m!=n...

    Text Solution

    |

  8. Find the inverse of the function: f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2

    Text Solution

    |

  9. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  10. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  11. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  12. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  13. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  14. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  15. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  16. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  17. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  18. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  19. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  20. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  21. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |