Home
Class 11
MATHS
f(x)=(1-x)/(1+x),x=-1 then f^(-1)(x) rel...

`f(x)=(1-x)/(1+x),x=-1` then `f^(-1)(x)` relation to

A

f(x)

B

`(1)/(f(x))`

C

`-f(x)`

D

`-(1)/(f(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the relationship between the function \( f(x) = \frac{1 - x}{1 + x} \) and its inverse \( f^{-1}(x) \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{1 - x}{1 + x} \] 2. **Set \( y = f(x) \)**: \[ y = \frac{1 - x}{1 + x} \] 3. **Express \( x \) in terms of \( y \)**: We need to solve for \( x \) in terms of \( y \). Start by cross-multiplying: \[ y(1 + x) = 1 - x \] 4. **Distribute \( y \)**: \[ y + yx = 1 - x \] 5. **Rearrange the equation**: Move all terms involving \( x \) to one side: \[ yx + x = 1 - y \] 6. **Factor out \( x \)**: \[ x(y + 1) = 1 - y \] 7. **Solve for \( x \)**: \[ x = \frac{1 - y}{y + 1} \] 8. **Identify the inverse function**: Since we set \( y = f(x) \), we have: \[ f^{-1}(y) = \frac{1 - y}{y + 1} \] 9. **Substituting back \( y \) with \( x \)**: Thus, we can write: \[ f^{-1}(x) = \frac{1 - x}{1 + x} \] 10. **Compare \( f^{-1}(x) \) with \( f(x) \)**: We see that: \[ f^{-1}(x) = f(x) \] ### Conclusion: The relationship between \( f^{-1}(x) \) and \( f(x) \) is: \[ f^{-1}(x) = f(x) \]

To solve the problem, we need to find the relationship between the function \( f(x) = \frac{1 - x}{1 + x} \) and its inverse \( f^{-1}(x) \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \frac{1 - x}{1 + x} \] ...
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|49 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If f : R - {1} rarr R, f(x) = (x-3)/(x+1) , then f^(-1) (x) equals

If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 are real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x)) is equal to

If A=R-{1} and function f:AtoA is defined by f(x)=(x+1)/(x-1) , then f^(-1)(x) is given by

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x != 0,-1

If f(x)=(x-1)/(x+1),x!=-1, then show that f(f(x))=-1/x provided that x!=0,1.

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. f(x)=(1-x)/(1+x),x=-1 then f^(-1)(x) relation to

    Text Solution

    |

  2. The number of bijective functions from set A to itself when A contains...

    Text Solution

    |

  3. If f(x)=|sin x| then domain of f for the existence of inverse of

    Text Solution

    |

  4. The function f:[-1//2,\ 1//2]->[-pi//2,pi//2\ ] defined by f(x)=s in^(...

    Text Solution

    |

  5. Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)...

    Text Solution

    |

  6. If f: (e,oo) rarr R & f(x)=log[log (logx)], then f is - (a)f is one-...

    Text Solution

    |

  7. Let f: R-{n}->R be a function defined by f(x)=(x-m)/(x-n) , where m!=n...

    Text Solution

    |

  8. Find the inverse of the function: f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2

    Text Solution

    |

  9. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  10. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  11. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  12. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  13. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  14. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  15. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  16. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  17. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  18. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  19. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  20. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  21. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |