Home
Class 11
MATHS
If f(x)=a^x, which of the following equa...

If `f(x)=a^x,` which of the following equalities do not hold ? (i) `f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x)` (ii) `f(-x)f(x)-1=0` (iii) `f(x+y)=f(x)f(y)` (iv) `f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)`

A

`f(x+2)-2f(x+1)+f(x)=(a-1)^(2)f(x)`

B

`f(-x)f(x)-1=0`

C

`f(x+y)=f(x) f(y)`

D

`f(x+3)-2(x+2)+f(x+1)=(a-2)^(2)f(x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which of the given equalities do not hold for the function \( f(x) = a^x \), we will evaluate each option step by step. ### Step 1: Evaluate Option (i) **Expression:** \[ f(x+2) - 2f(x+1) + f(x) \] **Substituting \( f(x) = a^x \):** \[ f(x+2) = a^{x+2} \] \[ f(x+1) = a^{x+1} \] \[ f(x) = a^x \] **Now substituting into the expression:** \[ a^{x+2} - 2a^{x+1} + a^x \] Factoring out \( a^x \): \[ = a^x (a^2 - 2a + 1) = a^x (a-1)^2 \] **Conclusion for (i):** \[ f(x+2) - 2f(x+1) + f(x) = (a-1)^2 f(x) \] This equality holds true. ### Step 2: Evaluate Option (ii) **Expression:** \[ f(-x)f(x) - 1 = 0 \] **Substituting \( f(x) = a^x \):** \[ f(-x) = a^{-x} = \frac{1}{a^x} \] Now substituting into the expression: \[ f(-x)f(x) = \frac{1}{a^x} \cdot a^x = 1 \] Thus, \[ f(-x)f(x) - 1 = 1 - 1 = 0 \] **Conclusion for (ii):** This equality holds true. ### Step 3: Evaluate Option (iii) **Expression:** \[ f(x+y) = f(x)f(y) \] **Substituting \( f(x) = a^x \):** \[ f(x+y) = a^{x+y} \] And, \[ f(x)f(y) = a^x \cdot a^y = a^{x+y} \] **Conclusion for (iii):** \[ f(x+y) = f(x)f(y) \] This equality holds true. ### Step 4: Evaluate Option (iv) **Expression:** \[ f(x+3) - 2f(x+2) + f(x+1) \] **Substituting \( f(x) = a^x \):** \[ f(x+3) = a^{x+3}, \quad f(x+2) = a^{x+2}, \quad f(x+1) = a^{x+1} \] **Now substituting into the expression:** \[ a^{x+3} - 2a^{x+2} + a^{x+1} \] Factoring out \( a^{x+1} \): \[ = a^{x+1} (a^2 - 2a + 1) = a^{x+1} (a-1)^2 \] **Now we compare with the right-hand side:** The right-hand side is: \[ (a-2)^2 f(x+1) = (a-2)^2 a^{x+1} \] **Conclusion for (iv):** The left-hand side is \( a^{x+1}(a-1)^2 \) and the right-hand side is \( a^{x+1}(a-2)^2 \). These are not equal unless \( a-1 = a-2 \), which is not generally true. Thus, this equality does not hold. ### Final Conclusion: The equality that does not hold is **Option (iv)**. ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|10 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

If f(x)="cos"^(2)x+"sec"^(2)x , then (i) f(x)lt1 (ii) f(x)=1 (iii) 2ltf(x)lt1 (iv) f(x)ge2

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

Given the graph of y=f(x) . Draw the graphs of the followin. (a) y=f(1-x) (b) y=-2f(x) (c) y=f(2x) (d) y=1-f(x)

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If (x)=(a^(x)-1)/(a^(x)+1) , choose the correct statement. I. f(-x)=f(x) II. F(-x)=-f(x) III. F(2x)=2f(x)

The graph of y = f(x) is as shown in the following figure. Find the following values (i) f(-3)" "(ii) f(-2)" "(iii) f(0) (iv) f(2)" "(v) f(3)" "(vi) lim_(x to -3) f(x) (vii) lim_(x to 0) f(x)" "(viii)lim_(x to 2) f(x)" "(ix) lim_(x to 3) f(x) (x) lim_(x to 2^(-)) f(x)" "(xi)lim_(x to -2^(+)) f (x)" "(x ii)lim_(x to 0^(-)) f(x) (x iii) lim_(x to 0^(+)) f(x)

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Exercise
  1. If f(x) =(x-1)/(x+1)," then f(2x) is:"

    Text Solution

    |

  2. If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) i...

    Text Solution

    |

  3. If f(x)=a^x, which of the following equalities do not hold ? (i) f(...

    Text Solution

    |

  4. The interval in which the function y = f(x) = (x-1)/(x^2-3x+3) transfo...

    Text Solution

    |

  5. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to ...

    Text Solution

    |

  6. If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to ...

    Text Solution

    |

  7. Which of the following functions is not an are not an injective map(s)...

    Text Solution

    |

  8. If f(x)={x ,xi sr a t ion a l1-x ,xi si r r a t ion a l ,t h e nf(f(x)...

    Text Solution

    |

  9. Let f (x) =x and g (x) = |x| for all . Then the function satisfying ...

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. If f(x)=(ax^(2)+b)^(3), the function g such that f(g(x))=g(f(x)), is g...

    Text Solution

    |

  12. If a function f:[2,oo)toR is defined by f(x)=x^(2)-4x+5, then the rang...

    Text Solution

    |

  13. The function f : R -> R is defined by f (x) = (x-1) (x-2) (x-3) is

    Text Solution

    |

  14. Let A={x,y,z}=B={u,v,w) and f:A to B be defined by f (x)=u, f(y)=v, f(...

    Text Solution

    |

  15. If f:R->R be defined by f(x)=x^2+1, then find f^(-1)(17) and f^(-1)(-3...

    Text Solution

    |

  16. The function f: NvecN(N is the set of natural numbers) defined by f(n)...

    Text Solution

    |

  17. The composite mapping fog of the maps f:R to R , f(x)=sin x and g:R to...

    Text Solution

    |

  18. If function f:RtoR is defined by f(x)=3x-4 then f^(-1)(x) is given by

    Text Solution

    |

  19. f : R rarr R is a function defined by f (x) = 10 x - 7. If g = f^(-1),...

    Text Solution

    |

  20. Let A={x in R : xlt=1} and f: A->A be defined as f(x)=x(2-x) . Then, ...

    Text Solution

    |