Home
Class 11
MATHS
Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne...

Let `f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0)` then f(x) equals

A

`x^(2)-` for all x

B

`x^(2)-2"for all" |x| gt 2`

C

`x^(2)-2"for all "|x|lt2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Rewrite the Right Side We start with the equation: \[ f\left(x + \frac{1}{x}\right) = x^2 + \frac{1}{x^2} \] We can rewrite the right side using the identity: \[ x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 \] Thus, we have: \[ f\left(x + \frac{1}{x}\right) = \left(x + \frac{1}{x}\right)^2 - 2 \] ### Step 2: Introduce a New Variable Let: \[ t = x + \frac{1}{x} \] This implies: \[ f(t) = t^2 - 2 \] ### Step 3: Determine the Domain Next, we need to find the range of \( t \). The expression \( x + \frac{1}{x} \) achieves its minimum value when \( x = 1 \) or \( x = -1 \): \[ x + \frac{1}{x} \geq 2 \quad \text{for } x > 0 \] \[ x + \frac{1}{x} \leq -2 \quad \text{for } x < 0 \] Thus, the values of \( t \) are: \[ t \in (-\infty, -2] \cup [2, \infty) \] ### Step 4: Write the Final Function From our previous steps, we can conclude that: \[ f(t) = t^2 - 2 \quad \text{for } |t| \geq 2 \] Substituting back for \( t \): \[ f(x) = x^2 - 2 \quad \text{for } |x| \geq 2 \] ### Final Answer Thus, the final answer is: \[ f(x) = x^2 - 2 \quad \text{for } |x| \geq 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If f(x)-3f((1)/(x))=2x+3(x ne 0) then f(3) is equal to

Let f(x)={{:(,x^(n)sin\ (1)/(x),x ne 0),(,0,x=0):} Then f(x) is continuous but not differentiable at x=0 . If

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

If f(x)= {{:(,(1)/(x)-(2)/(e^(2x)-1),x ne 0),(,1,x=0):}

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

Let f(x) = ax^(2) - bx + c^(2), b ne 0 and f(x) ne 0 for all x in R . Then

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Find the inverse of the function: f(x)=(e^(x)-e^(-x))/(e^(x)+e^(-x))+2

    Text Solution

    |

  2. Find the inverse of the function :y=(1 0^x-1 0^(-x))/(1 0^x+1 0^(-x))+...

    Text Solution

    |

  3. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  4. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  5. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  6. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  7. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  8. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  9. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  10. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  11. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  12. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  13. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  14. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |

  15. The function of f:R to R, defined by f(x)=[x], where [x] denotes the g...

    Text Solution

    |

  16. Let f(x)=x,g(x)=1/x and h(x)=f(x)g(x) . Then h(x)=1 for a.x in R b. x...

    Text Solution

    |

  17. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x the...

    Text Solution

    |

  18. If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R, then f(20...

    Text Solution

    |

  19. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  20. A = { x // x in R, x != 0, -4 <= x <= 4 and f: A -> R is defined by f...

    Text Solution

    |