Home
Class 11
MATHS
If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x t...

If `g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x` then f(x) is equal to

A

`1+2x^(2)`

B

`2+x^(2)`

C

`1+x`

D

2+x

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( g(x) = 1 + \sqrt{x} \) and \( f(g(x)) = 3 + 2\sqrt{x} + x \), we can follow these steps: ### Step 1: Substitute \( g(x) \) into \( f(g(x)) \) We know: \[ g(x) = 1 + \sqrt{x} \] Thus, we can write: \[ f(g(x)) = f(1 + \sqrt{x}) = 3 + 2\sqrt{x} + x \] ### Step 2: Rewrite \( f(g(x)) \) We can rearrange the expression \( 3 + 2\sqrt{x} + x \): \[ 3 + 2\sqrt{x} + x = 2 + 1 + 2\sqrt{x} + x \] This can be grouped as: \[ = 2 + (1 + \sqrt{x})^2 \] since \( (1 + \sqrt{x})^2 = 1 + 2\sqrt{x} + x \). ### Step 3: Identify \( f(x) \) From the previous step, we have: \[ f(1 + \sqrt{x}) = 2 + (1 + \sqrt{x})^2 \] Now, let \( u = 1 + \sqrt{x} \). Then, we can express \( \sqrt{x} \) as \( u - 1 \) and substitute back: \[ f(u) = 2 + u^2 \] ### Step 4: Write the final expression for \( f(x) \) Thus, the function \( f(x) \) can be expressed as: \[ f(x) = 2 + x^2 \] ### Step 5: Verify the solution To ensure our solution is correct, we can check if substituting \( g(x) \) back into \( f(x) \) gives us \( f(g(x)) \): \[ f(g(x)) = f(1 + \sqrt{x}) = 2 + (1 + \sqrt{x})^2 \] Calculating this gives: \[ = 2 + (1 + 2\sqrt{x} + x) = 2 + 1 + 2\sqrt{x} + x = 3 + 2\sqrt{x} + x \] This matches the original expression for \( f(g(x)) \), confirming our solution is correct. ### Final Answer Thus, the function \( f(x) \) is: \[ \boxed{2 + x^2} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x-4) / (2sqrtx) , then f' (4) is equal to

If f(x) =(4-x)^2 and g(x) =sqrtx , then (g o f) (x)=

If g(x)=x^3+x-2 and g(f(x))=x^3+3x^2+4x then f(1)+f(2) is equal to ________

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

Let f(x)=2x-sinx and g(x) = 3^(sqrtx) . Then

If f(x)=x+tanx and f is inverse of g, then g ′(x) is equal to

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If f(x) = 7x + 9 and g(x) = 7x^(2) - 3 , then (f - g)(x) is equal to

If f(x) = x^(sqrtx) , then f(sqrt2) =

If f(x)=3x-sqrtx and g(x)=x^(2) , what is f(g(4)) ?

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

    Text Solution

    |

  2. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  3. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  4. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  5. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  6. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  7. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  8. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  9. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  10. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  11. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  12. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |

  13. The function of f:R to R, defined by f(x)=[x], where [x] denotes the g...

    Text Solution

    |

  14. Let f(x)=x,g(x)=1/x and h(x)=f(x)g(x) . Then h(x)=1 for a.x in R b. x...

    Text Solution

    |

  15. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x the...

    Text Solution

    |

  16. If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R, then f(20...

    Text Solution

    |

  17. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  18. A = { x // x in R, x != 0, -4 <= x <= 4 and f: A -> R is defined by f...

    Text Solution

    |

  19. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  20. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |