Home
Class 11
MATHS
If f(x)=(1-x)/(1+x), x ne 0, -1 and alph...

If `f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x)))`, then

A

`alpha gt 2`

B

`alpha lt -2`

C

`|alpha| gt 2`

D

`alpha=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: 1. **Define the function**: We start with the function \( f(x) = \frac{1 - x}{1 + x} \). 2. **Find \( f(f(x)) \)**: We need to substitute \( f(x) \) into itself. - First, we find \( f(f(x)) \): \[ f(f(x)) = f\left(\frac{1 - x}{1 + x}\right) \] Substituting into the function: \[ = \frac{1 - \left(\frac{1 - x}{1 + x}\right)}{1 + \left(\frac{1 - x}{1 + x}\right)} \] Simplifying the numerator: \[ 1 - \frac{1 - x}{1 + x} = \frac{(1 + x) - (1 - x)}{1 + x} = \frac{2x}{1 + x} \] Simplifying the denominator: \[ 1 + \frac{1 - x}{1 + x} = \frac{(1 + x) + (1 - x)}{1 + x} = \frac{2}{1 + x} \] Therefore, \[ f(f(x)) = \frac{\frac{2x}{1 + x}}{\frac{2}{1 + x}} = x \] 3. **Find \( f(f(1/x)) \)**: Next, we need to find \( f(f(1/x)) \). - First, find \( f(1/x) \): \[ f\left(\frac{1}{x}\right) = \frac{1 - \frac{1}{x}}{1 + \frac{1}{x}} = \frac{\frac{x - 1}{x}}{\frac{x + 1}{x}} = \frac{x - 1}{x + 1} \] - Now substitute \( f(1/x) \) into \( f(x) \): \[ f(f(1/x)) = f\left(\frac{x - 1}{x + 1}\right) \] Substituting into the function: \[ = \frac{1 - \left(\frac{x - 1}{x + 1}\right)}{1 + \left(\frac{x - 1}{x + 1}\right)} \] Simplifying the numerator: \[ 1 - \frac{x - 1}{x + 1} = \frac{(x + 1) - (x - 1)}{x + 1} = \frac{2}{x + 1} \] Simplifying the denominator: \[ 1 + \frac{x - 1}{x + 1} = \frac{(x + 1) + (x - 1)}{x + 1} = \frac{2x}{x + 1} \] Therefore, \[ f(f(1/x)) = \frac{\frac{2}{x + 1}}{\frac{2x}{x + 1}} = \frac{1}{x} \] 4. **Calculate \( \alpha \)**: Now we can find \( \alpha \): \[ \alpha = f(f(x)) + f(f(1/x)) = x + \frac{1}{x} \] 5. **Formulate the quadratic equation**: We can rearrange this expression: \[ x^2 - \alpha x + 1 = 0 \] 6. **Determine the discriminant**: For \( x \) to be real, the discriminant must be non-negative: \[ \alpha^2 - 4 \cdot 1 \cdot 1 \geq 0 \] This simplifies to: \[ \alpha^2 - 4 \geq 0 \] Factoring gives: \[ (\alpha - 2)(\alpha + 2) \geq 0 \] 7. **Find the intervals**: The solution to this inequality is: \[ \alpha \leq -2 \quad \text{or} \quad \alpha \geq 2 \] Thus, the final answer is that \( \alpha \) belongs to the intervals: \[ \alpha \in (-\infty, -2] \cup [2, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

Let a function f(x), x ne 0 be such that f(x)+f((1)/(x))=f(x)*f((1)/(x))" then " f(x) can be

If f(x)=x+(1)/(x) , then prove that : {f(x)}^(3)=f(x^(3))+3*f((1)/(x))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=1/(f(x))

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

For x in R , x ne0, 1, let f_(0)(x)=(1)/(1-x) and f_(n+1)(x)=f_(0)(f_(n)(x)),n=0,1,2….. Then the value of f_(100)(3)+f_(1)((2)/(3))+f_(2)((3)/(2)) is equal to

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=(x-1)/(x+1) , then show that f(1/x)=-f(x) (ii) f(-1/x)=-1/(f(x))

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  2. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  3. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  4. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  5. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  6. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  7. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  8. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  9. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  10. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  11. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |

  12. The function of f:R to R, defined by f(x)=[x], where [x] denotes the g...

    Text Solution

    |

  13. Let f(x)=x,g(x)=1/x and h(x)=f(x)g(x) . Then h(x)=1 for a.x in R b. x...

    Text Solution

    |

  14. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x the...

    Text Solution

    |

  15. If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R, then f(20...

    Text Solution

    |

  16. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  17. A = { x // x in R, x != 0, -4 <= x <= 4 and f: A -> R is defined by f...

    Text Solution

    |

  18. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  19. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  20. The function f: R->R defined by f(x)=6^x+6^(|x|) is (a) one-one and on...

    Text Solution

    |