Home
Class 11
MATHS
If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+co...

If `f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R`, then f(2010)

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(2010) \) for the function \[ f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}, \] we will simplify the expression step by step. ### Step 1: Rewrite the function We start with the function as given: \[ f(x) = \frac{\sin^4 x + \cos^2 x}{\sin^2 x + \cos^4 x}. \] ### Step 2: Substitute \(\cos^2 x\) and \(\sin^2 x\) Recall that \(\sin^2 x + \cos^2 x = 1\). We can express \(\cos^2 x\) as \(1 - \sin^2 x\) and \(\sin^2 x\) as \(1 - \cos^2 x\). ### Step 3: Simplify the numerator The numerator can be rewritten as: \[ \sin^4 x + \cos^2 x = \sin^4 x + (1 - \sin^2 x) = \sin^4 x + 1 - \sin^2 x. \] ### Step 4: Simplify the denominator The denominator can be rewritten as: \[ \sin^2 x + \cos^4 x = \sin^2 x + (1 - \sin^2 x)^2. \] Expanding \((1 - \sin^2 x)^2\): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x. \] Thus, the denominator becomes: \[ \sin^2 x + 1 - 2\sin^2 x + \sin^4 x = 1 - \sin^2 x + \sin^4 x. \] ### Step 5: Combine and simplify Now we have: \[ f(x) = \frac{\sin^4 x + 1 - \sin^2 x}{1 - \sin^2 x + \sin^4 x}. \] Notice that both the numerator and denominator have the same terms. Therefore, we can simplify: \[ f(x) = \frac{1}{1} = 1. \] ### Step 6: Conclusion Since \( f(x) = 1 \) for all \( x \in \mathbb{R} \), we find that: \[ f(2010) = 1. \] Thus, the final answer is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|48 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(cos^2x+sin^4x)/(sin^2 x+cos^4x), for x in R, then f(2002) is equal to

f'(sin^(2)x)lt f'(cos^(2)x) for x in

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

f(x) = sin^(4)x+cos^(4)x in [0,(pi)/(2)]

(i) Find maximum value of f(x)=|{:(1+sin^(2)x,cos^(2)x,4sin2x),(sin^(2)x,1+cos^(2)x,4sin2x),(sin^(2)x,cos^(2)x,1+4sin2x):}| . (ii) Let A,B and C be the angles of triangle such that Agt=Bgt=C. Find the minimum value of Delta where Delta=|{:(sin^(2)A,sinAcosA,cos^(2)A),(sin^(2) B,sinBcosB,cos^(2)B),(sin^(2)C,sinCcosC,cos^(2)C):}| .

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R . Then the range of f(x) is

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

If x in (0,1) and f(x)=sec{tan^(-1)((sin(cos^(-1)x)+cos(sin^(-1)x))/(cos(cos^(-1)x)+sin(sin^(-1)x)))} , then sum_(r=2)^(10)f(1/r) is _______ .

Number of solutions of equation 2"sin" x/2 cos^(2) x-2 "sin" x/2 sin^(2) x=cos^(2) x-sin^(2) x for x in [0, 4pi] is

OBJECTIVE RD SHARMA ENGLISH-FUNCTIONS-Chapter Test
  1. Let f : R rarr R, g : R rarr R be two functions given by f(x) = 2x - 3...

    Text Solution

    |

  2. If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

    Text Solution

    |

  3. If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))), then

    Text Solution

    |

  4. Let f:R to R be a function defined by f(x)=(x^(2)-8)/(x^(2)+2). Then f...

    Text Solution

    |

  5. If f:(-oo,2]to (-oo,4] where f(x), then f ^(-1) (x) is given by :

    Text Solution

    |

  6. Find the inverse of the function, (assuming onto). " " ...

    Text Solution

    |

  7. f: R->R is defined by f(x)=(e^(x^2)-e^(-x^2))/(e^(x^2)+e^(-x^2)) is :

    Text Solution

    |

  8. If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)...

    Text Solution

    |

  9. If f(x)=(2^x+2^(-x))/2 , then f(x+y)f(x-y) is equals to 1/2{f(2x)+f(2y...

    Text Solution

    |

  10. The function f:R to R given by f(x)=x^(2)+x is

    Text Solution

    |

  11. Let f:R to R and g:R to R be given by f(x)=3x^(2)+2 and g(x)=3x-1 for ...

    Text Solution

    |

  12. The function of f:R to R, defined by f(x)=[x], where [x] denotes the g...

    Text Solution

    |

  13. Let f(x)=x,g(x)=1/x and h(x)=f(x)g(x) . Then h(x)=1 for a.x in R b. x...

    Text Solution

    |

  14. If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x the...

    Text Solution

    |

  15. If f(x)=(sin^(4)x+cos^(2)x)/(sin^(2)x+cos^(4)x)"for "x in R, then f(20...

    Text Solution

    |

  16. The function f:R to R is defined by f(x)=cos^(2)x+sin^(4)x for x in R....

    Text Solution

    |

  17. A = { x // x in R, x != 0, -4 <= x <= 4 and f: A -> R is defined by f...

    Text Solution

    |

  18. If f: RvecR and g: RvecR are defined by f(x)=2x+3a n dg(x)=x^2+7, then...

    Text Solution

    |

  19. Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x l...

    Text Solution

    |

  20. The function f: R->R defined by f(x)=6^x+6^(|x|) is (a) one-one and on...

    Text Solution

    |