Home
Class 11
MATHS
If a,b,c are three positive real numbers...

If `a,b,c` are three positive real numbers then the minimum value of the expression `(b+c)/a+(c+a)/b+(a+b)/c` is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}\) for positive real numbers \(a\), \(b\), and \(c\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ E = \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \] 2. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any positive real numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] We can apply this to the three fractions in \(E\): \[ \frac{\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}}{3} \geq \sqrt[3]{\frac{(b+c)(c+a)(a+b)}{abc}} \] 3. **Simplify the Right-Hand Side**: We need to simplify \((b+c)(c+a)(a+b)\): \[ (b+c)(c+a)(a+b) = (b+c)(ca + ab + ac + bc) = bca + bcb + bca + cba + cbc + cab + cba + abc \] This expression is complex, but we can use the AM-GM inequality on each pair: \[ b+c \geq 2\sqrt{bc}, \quad c+a \geq 2\sqrt{ca}, \quad a+b \geq 2\sqrt{ab} \] 4. **Combine the Inequalities**: Multiplying these inequalities gives: \[ (b+c)(c+a)(a+b) \geq 2\sqrt{bc} \cdot 2\sqrt{ca} \cdot 2\sqrt{ab} = 8\sqrt{(abc)^2} = 8abc \] 5. **Substituting Back**: Now substituting back into the AM-GM inequality: \[ \frac{\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}}{3} \geq \sqrt[3]{\frac{8abc}{abc}} = \sqrt[3]{8} = 2 \] Therefore, \[ \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \geq 6 \] 6. **Conclusion**: The minimum value of the expression \(\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}\) is \(6\). ### Final Answer: Thus, the minimum value of the expression is: \[ \boxed{6} \]

To find the minimum value of the expression \(\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}\) for positive real numbers \(a\), \(b\), and \(c\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Rewrite the Expression**: We start with the expression: \[ E = \frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a,b,c are distinct positive real numbers, then

If a,b,c are non-zero real numbers, then the minimum value of the expression ((a^(8)+4a^(4)+1)(b^(4)+3b^(2)+1)(c^(2)+2c+2))/(a^(4)b^(2)) equals

If a ,b ,c are non-zero real numbers, then find the minimum value of the expression (((a^4+ 3a^2+1)(b^4+5b^2+1)(c^4+7c^2+1))/(a^2b^2c^2)) which is not divisible by prime number.

If a,b,c are positive real numbers, then the number of real roots of the equation ax^2+b|x|+c is

a, b, c are distinct positive real in HP, then the value of the expression, ((b+a)/(b-a))+((b+c)/(b-c)) is equal to

If a, b, c are positive real numbers, then the minimum value of a^(logb-logc)+b^(logc-loga)+c^(loga-logb) is

If a,b,c are three positive numbers then the minimum value of (a^(4)+b^(6)+c^(8))/((ab^(3)c^(2))2sqrt(2)) is equal to_____

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If p,q,r be three distinct real numbers, then the value of (p+q)(q+r)(...

    Text Solution

    |

  2. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  3. If a^2+b^2+c^2=1 then ab+bc+ca lies in the interval

    Text Solution

    |

  4. If a, b, c are distinct positive real numbers such that a+(1)/(b)=4,b+...

    Text Solution

    |

  5. If the product of n positive numbers is 1, then their sum is

    Text Solution

    |

  6. If a, b, c are positive real numbers, then the least value of (a+b+c)(...

    Text Solution

    |

  7. If a(i)gt0 for i u=1, 2, 3, … ,n and a(1)a(2)…a(n)=1, then the minimum...

    Text Solution

    |

  8. If a,b,c are the sides of a triangle then a/(b+c-1)+b/(c+a-b)+c/(a+b-c...

    Text Solution

    |

  9. If a, b, c are positive real number such that lamba abc is the minimum...

    Text Solution

    |

  10. If P(n) denotes the product of first n natural numbers, then for all n...

    Text Solution

    |

  11. If x(n)gt1 for all n in N, then the minimum value of the expression ...

    Text Solution

    |

  12. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  13. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  14. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  15. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  16. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  17. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  18. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  19. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  20. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |