Home
Class 11
MATHS
If a^2+b^2+c^2=1 then ab+bc+ca lies in t...

If `a^2+b^2+c^2=1` then `ab+bc+ca` lies in the interval

A

[0,1]

B

`[-1//2,1]`

C

`[0,1//2]`

D

[1,2]

Text Solution

AI Generated Solution

The correct Answer is:
To find the interval in which \( ab + bc + ca \) lies given that \( a^2 + b^2 + c^2 = 1 \), we can follow these steps: ### Step 1: Write down the given condition We start with the equation: \[ a^2 + b^2 + c^2 = 1 \] ### Step 2: Use the identity for the square of a sum We know that: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca) \] Substituting the given condition into this identity, we get: \[ (a + b + c)^2 = 1 + 2(ab + bc + ca) \] ### Step 3: Analyze the expression Since \( (a + b + c)^2 \geq 0 \) (the square of a real number is non-negative), we can write: \[ 1 + 2(ab + bc + ca) \geq 0 \] ### Step 4: Rearranging the inequality Rearranging the above inequality gives us: \[ 2(ab + bc + ca) \geq -1 \] Dividing both sides by 2, we find: \[ ab + bc + ca \geq -\frac{1}{2} \] ### Step 5: Finding an upper bound Next, we can use the Cauchy-Schwarz inequality: \[ (a^2 + b^2 + c^2)(1^2 + 1^2 + 1^2) \geq (a + b + c)^2 \] Substituting \( a^2 + b^2 + c^2 = 1 \) into the inequality gives: \[ 1 \cdot 3 \geq (a + b + c)^2 \] Thus, \[ (a + b + c)^2 \leq 3 \] Taking the square root, we have: \[ |a + b + c| \leq \sqrt{3} \] Now, substituting back into our earlier equation: \[ 1 + 2(ab + bc + ca) \leq 3 \] This simplifies to: \[ 2(ab + bc + ca) \leq 2 \] Dividing by 2 gives: \[ ab + bc + ca \leq 1 \] ### Step 6: Conclusion Combining both inequalities, we conclude that: \[ -\frac{1}{2} \leq ab + bc + ca \leq 1 \] Thus, the interval in which \( ab + bc + ca \) lies is: \[ \left[-\frac{1}{2}, 1\right] \]

To find the interval in which \( ab + bc + ca \) lies given that \( a^2 + b^2 + c^2 = 1 \), we can follow these steps: ### Step 1: Write down the given condition We start with the equation: \[ a^2 + b^2 + c^2 = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are positive real numbers such that aleblec, then (a^(2)+b^(2)+c^(2))/(a+b+c) lies in the interval

If a,b,c are sides an acute angle triangle satisfying a^(2)+b^(2)+c^(2)=6 then (ab+bc+ca) can be equal to

If a^2+2bc ,b^2+2ca, c^2+2ab are in A.P. then :-

If a^(2) + b^(2) + c^(2) = 50 and ab +bc + ca= 47 , find a + b+ c

If a^(2) + b^(2) + c^(2) = 35 and ab+ bc + ca= 23 , find a + b+ c

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If a^(2) + b^(2) + c^(2) = 29 and a + b + c = 9 , find: ab + bc + ca

(i) If a^(2)+b^(2)+c^(2)=20 " and" a+b+c=0, " find " ab+bc+ac . (ii) If a^(2)+b^(2)+c^(2)=250 " and" ab+bc+ca=3, " find" a+b+c . (iii) If a+b+c=11 and ab+bc+ca=25, then find the value of a^(3)+b^(3)+c^(3)-3 abc.

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

If a+b+c=2, ab+bc+ca=-1 and abc=-2 , find the value of a^(3)+b^(3)+c^(3) .

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If p,q,r be three distinct real numbers, then the value of (p+q)(q+r)(...

    Text Solution

    |

  2. If a,b,c are three positive real numbers then the minimum value of the...

    Text Solution

    |

  3. If a^2+b^2+c^2=1 then ab+bc+ca lies in the interval

    Text Solution

    |

  4. If a, b, c are distinct positive real numbers such that a+(1)/(b)=4,b+...

    Text Solution

    |

  5. If the product of n positive numbers is 1, then their sum is

    Text Solution

    |

  6. If a, b, c are positive real numbers, then the least value of (a+b+c)(...

    Text Solution

    |

  7. If a(i)gt0 for i u=1, 2, 3, … ,n and a(1)a(2)…a(n)=1, then the minimum...

    Text Solution

    |

  8. If a,b,c are the sides of a triangle then a/(b+c-1)+b/(c+a-b)+c/(a+b-c...

    Text Solution

    |

  9. If a, b, c are positive real number such that lamba abc is the minimum...

    Text Solution

    |

  10. If P(n) denotes the product of first n natural numbers, then for all n...

    Text Solution

    |

  11. If x(n)gt1 for all n in N, then the minimum value of the expression ...

    Text Solution

    |

  12. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  13. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  14. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  15. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  16. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  17. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  18. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  19. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  20. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |