Home
Class 11
MATHS
If a(i)gt0 for i u=1, 2, 3, … ,n and a(1...

If `a_(i)gt0` for `i u=1, 2, 3, … ,n` and `a_(1)a_(2)…a_(n)=1,` then the minimum value of `(1+a_(1))(1+a_(2))…(1+a_(n))`, is

A

`2^(n//2)`

B

`2^(n)`

C

`2^(2n)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \((1 + a_1)(1 + a_2) \cdots (1 + a_n)\) given that \(a_i > 0\) for \(i = 1, 2, \ldots, n\) and \(a_1 a_2 \cdots a_n = 1\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any positive numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} \] We will apply this to the terms \(1 + a_i\). 2. **Set Up the Inequality**: For each \(i\), we can write: \[ 1 + a_i \geq 2\sqrt{1 \cdot a_i} \] This can be derived from the AM-GM inequality applied to the numbers \(1\) and \(a_i\). 3. **Multiply the Inequalities**: Now, we can multiply these inequalities for all \(i\) from \(1\) to \(n\): \[ (1 + a_1)(1 + a_2) \cdots (1 + a_n \geq (2\sqrt{1 \cdot a_1})(2\sqrt{1 \cdot a_2}) \cdots (2\sqrt{1 \cdot a_n}) \] This simplifies to: \[ (1 + a_1)(1 + a_2) \cdots (1 + a_n \geq 2^n \sqrt{a_1 a_2 \cdots a_n} \] 4. **Substitute the Given Condition**: Since we know that \(a_1 a_2 \cdots a_n = 1\), we can substitute this into our inequality: \[ (1 + a_1)(1 + a_2) \cdots (1 + a_n \geq 2^n \sqrt{1} = 2^n \] 5. **Conclusion**: Therefore, the minimum value of \((1 + a_1)(1 + a_2) \cdots (1 + a_n)\) is \(2^n\). ### Final Answer: The minimum value of \((1 + a_1)(1 + a_2) \cdots (1 + a_n)\) is \(2^n\).

To find the minimum value of the expression \((1 + a_1)(1 + a_2) \cdots (1 + a_n)\) given that \(a_i > 0\) for \(i = 1, 2, \ldots, n\) and \(a_1 a_2 \cdots a_n = 1\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Apply AM-GM Inequality**: According to the AM-GM inequality, for any positive numbers \(x_1, x_2, \ldots, x_n\): \[ \frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a_(1), a_(2), a_(3).... A_(n) in R^(+) and a_(1).a_(2).a_(3).... A_(n) = 1 , then minimum value of (1 + a_(1) + a_(1)^(2)) (a + a_(2) + a_(2)^(2)) (1 + a_(3) + a_(3)^(2))..... (1 + a_(n) + a_(n)^(2)) is equal to

Equation x^(n)-1=0, ngt1, n in N," has roots "1,a_(1),a_(2),…,a_(n-1). The value of (1-a_(1))(1-a_(2))…(1-a_(n-1)) is

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

If a_(1)gt0 for all i=1,2,…..,n . Then, the least value of (a_(1)+a_(2)+……+a_(n))((1)/(a_(1))+(1)/(a_(2))+…+(1)/(a_(n))) , is

If a_(i) gt 0 AA I in N such that prod_(i=1)^(n) a_(i) = 1 , then prove that (1 + a_(1)) (1 + a_(2)) (1 + a_(3)) .... (1 + a_(n)) ge 2^(n)

If a_(1) = 2 and a_(n) - a_(n-1) = 2n (n ge 2) , find the value of a_(1) + a_(2) + a_(3)+…+a_(20) .

If a_(n) gt a_(n-1) gt …. gt a_(2) gt a_(1) gt 1 , then the value of "log"_(a_(1))"log"_(a_(2)) "log"_(a_(3))…."log"_(a_(n)) is equal to

Statement I If A gt 0 , B gt 0 and A+B= pi/3 , then the maximum value of tan A tan B is 1/3 . Statement II If a_(1)+a_(2)+a_(3)+...+a_(n)=k (constant), then the value a_(1)a_(2)a_(3)...a_(n) is greatest when a_(1)=a_(2)=a_(3)=...+a_(n)

For an increasing G.P. a_(1), a_(2), a_(3),.....a_(n), " If " a_(6) = 4a_(4), a_(9) - a_(7) = 192 , then the value of sum_(l=1)^(oo) (1)/(a_(i)) is

If a_(n+1)=a_(n-1)+2a_(n) for n=2,3,4, . . . and a_(1)=1 and a_(2)=1 , then a_(5) =

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If the product of n positive numbers is 1, then their sum is

    Text Solution

    |

  2. If a, b, c are positive real numbers, then the least value of (a+b+c)(...

    Text Solution

    |

  3. If a(i)gt0 for i u=1, 2, 3, … ,n and a(1)a(2)…a(n)=1, then the minimum...

    Text Solution

    |

  4. If a,b,c are the sides of a triangle then a/(b+c-1)+b/(c+a-b)+c/(a+b-c...

    Text Solution

    |

  5. If a, b, c are positive real number such that lamba abc is the minimum...

    Text Solution

    |

  6. If P(n) denotes the product of first n natural numbers, then for all n...

    Text Solution

    |

  7. If x(n)gt1 for all n in N, then the minimum value of the expression ...

    Text Solution

    |

  8. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  9. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  10. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  11. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  12. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  13. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  14. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  17. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  18. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  19. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  20. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |