Home
Class 11
MATHS
If a,b,c are the sides of a triangle the...

If a,b,c are the sides of a triangle then `a/(b+c-1)+b/(c+a-b)+c/(a+b-c)=`

A

`gt3`

B

`lt3`

C

`le2`

D

`ge2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \] given that \(a\), \(b\), and \(c\) are the sides of a triangle. ### Step 1: Set up the expression Let: \[ S = \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \] ### Step 2: Multiply the entire expression by 2 To simplify our calculations, we can multiply the entire expression by 2: \[ 2S = 2 \left( \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \right) \] ### Step 3: Add 3 to the right-hand side Next, we add 3 to the right-hand side: \[ 2S + 3 = 2 \left( \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \right) + 3 \] ### Step 4: Rewrite the expression We can rewrite the expression: \[ 2S + 3 = 2 \left( \frac{a}{b+c-1} + 1 \right) + 2 \left( \frac{b}{c+a-1} + 1 \right) + 2 \left( \frac{c}{a+b-1} + 1 \right) - 3 \] ### Step 5: Combine terms Combining the terms, we have: \[ 2S + 3 = \frac{2a + (b+c-1)}{b+c-1} + \frac{2b + (c+a-1)}{c+a-1} + \frac{2c + (a+b-1)}{a+b-1} \] ### Step 6: Apply the AM-GM inequality Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we know that: \[ \frac{x_1 + x_2 + x_3}{3} \geq \sqrt[3]{x_1 x_2 x_3} \] where \(x_1 = \frac{1}{b+c-a}\), \(x_2 = \frac{1}{c+a-b}\), \(x_3 = \frac{1}{a+b-c}\). ### Step 7: Establish the inequality From the AM-GM inequality, we can establish that: \[ \frac{1}{b+c-a} + \frac{1}{c+a-b} + \frac{1}{a+b-c} \geq \frac{9}{(b+c-a) + (c+a-b) + (a+b-c)} \] which simplifies to: \[ \frac{9}{a+b+c} \] ### Step 8: Solve for \(S\) Thus, we can conclude: \[ 2S \geq 9 \] This implies: \[ S \geq \frac{9}{2} \] ### Step 9: Conclusion Therefore, the final result is: \[ \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \geq \frac{9}{2} \]

To solve the problem, we need to evaluate the expression: \[ \frac{a}{b+c-1} + \frac{b}{c+a-1} + \frac{c}{a+b-1} \] given that \(a\), \(b\), and \(c\) are the sides of a triangle. ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c are the sides of a triangle, then the minimum value of a/(b+c-a)+b/(c+a-b)+c/(a+b-c) is equal to (a) 3 (b) 6 (c) 9 (d) 12

If a , b , c are the sides of triangle , then the least value of (a)/(c+a-b)+(b)/(a+b-c)+(c )/(b+c-a) is

If a ,b ,c are sides of a scalene triangle, then value of |[a, b, c] ,[b, c, a] ,[c, a, b]| is positive (b) negative non-positive (d) non-negative

If a , ba n dc are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

The area of a triangle with vertices (a,b+c), (b,c+a) and (c,a+b) is

If p,q are two-collinear vectors such that (b-c)ptimesq+(c-a)p+(a-b)q=0 where a, b, c are lengths of sides of a triangle, then the triangle is

If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a, b, c are positive real numbers, then the least value of (a+b+c)(...

    Text Solution

    |

  2. If a(i)gt0 for i u=1, 2, 3, … ,n and a(1)a(2)…a(n)=1, then the minimum...

    Text Solution

    |

  3. If a,b,c are the sides of a triangle then a/(b+c-1)+b/(c+a-b)+c/(a+b-c...

    Text Solution

    |

  4. If a, b, c are positive real number such that lamba abc is the minimum...

    Text Solution

    |

  5. If P(n) denotes the product of first n natural numbers, then for all n...

    Text Solution

    |

  6. If x(n)gt1 for all n in N, then the minimum value of the expression ...

    Text Solution

    |

  7. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  8. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  9. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  10. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  11. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  12. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  13. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  14. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  15. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  16. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  17. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  18. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  19. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  20. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |