Home
Class 11
MATHS
If x(n)gt1 for all n in N, then the mini...

If `x_(n)gt1` for all `n in N`, then the minimum value of the expression
`log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n)` is

A

0

B

1

C

2

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \[ \log_{x_2} x_1 + \log_{x_3} x_2 + \ldots + \log_{x_n} x_{n-1} + \log_{x_1} x_n \] given that \( x_n > 1 \) for all \( n \in \mathbb{N} \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Identify the Terms**: The expression consists of \( n \) logarithmic terms: \[ \log_{x_2} x_1, \log_{x_3} x_2, \ldots, \log_{x_n} x_{n-1}, \log_{x_1} x_n \] 2. **Apply AM-GM Inequality**: According to the AM-GM inequality: \[ \frac{a_1 + a_2 + \ldots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \ldots a_n} \] where \( a_i \) are the terms we are considering. Here, we can set: \[ a_1 = \log_{x_2} x_1, \quad a_2 = \log_{x_3} x_2, \quad \ldots, \quad a_n = \log_{x_1} x_n \] 3. **Calculate the Arithmetic Mean**: The arithmetic mean of these terms is: \[ \frac{\log_{x_2} x_1 + \log_{x_3} x_2 + \ldots + \log_{x_1} x_n}{n} \] 4. **Express Logarithms in Terms of Natural Logarithms**: Using the change of base formula, we can express each logarithm: \[ \log_{x_k} x_{k-1} = \frac{\log x_{k-1}}{\log x_k} \] Therefore, the product of all terms becomes: \[ \log_{x_2} x_1 \cdot \log_{x_3} x_2 \cdots \log_{x_1} x_n = \frac{\log x_1}{\log x_2} \cdot \frac{\log x_2}{\log x_3} \cdots \frac{\log x_n}{\log x_1} \] 5. **Simplify the Product**: Notice that in the product, all logarithmic terms will cancel out: \[ = \frac{\log x_1}{\log x_1} = 1 \] 6. **Apply AM-GM Result**: Thus, we have: \[ \frac{\log_{x_2} x_1 + \log_{x_3} x_2 + \ldots + \log_{x_1} x_n}{n} \geq \sqrt[n]{1} = 1 \] 7. **Multiply by n**: Therefore, multiplying both sides by \( n \): \[ \log_{x_2} x_1 + \log_{x_3} x_2 + \ldots + \log_{x_1} x_n \geq n \] 8. **Conclusion**: The minimum value of the expression is \( n \). ### Final Answer: The minimum value of the expression is \( n \).

To find the minimum value of the expression \[ \log_{x_2} x_1 + \log_{x_3} x_2 + \ldots + \log_{x_n} x_{n-1} + \log_{x_1} x_n \] given that \( x_n > 1 \) for all \( n \in \mathbb{N} \), we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

IF x=198! then value of the expression 1/(log_2x)+1/(log_3x)+...+1/(log_198 x) equals

Find x if log_(2) log_(1//2) log_(3) x gt 0

The sum of all the roots of the equation log_(2)(x-1)+log_(2)(x+2)-log_(2)(3x-1)=log_(2)4

If x=prod_(n=1)^(2000)n, then the value of the expression, (1)/((1)/(log_(2)x)+(1)/(log_(3)x)+.........+(1)/(log_(2000)x))is..........

If x=log_(2^(2))2+log_(2^(3))2^(2)+log_(2^(4))2^(3)+...+log_(2^(n+1))2^(n), then

If 0 lt a lt 1 , then the solution set of the inequation (1+(log_(a)x)^(2))/(1+(log_(a)x)) gt1 , is

The coefficient of x^(n) in the expansion of log_(a)(1+x) is

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

The value of x, log_(1/2)x >= log_(1/3)x is

The coefficient of x^(n) in the expansion of log_(e)(1+3x+2x^2) is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a, b, c are positive real number such that lamba abc is the minimum...

    Text Solution

    |

  2. If P(n) denotes the product of first n natural numbers, then for all n...

    Text Solution

    |

  3. If x(n)gt1 for all n in N, then the minimum value of the expression ...

    Text Solution

    |

  4. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  5. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  6. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  7. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  8. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  9. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  10. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  11. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  12. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  13. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  14. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  15. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  16. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  17. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |

  18. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  19. about to only mathematics

    Text Solution

    |

  20. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |