Home
Class 11
MATHS
If x+y+z=1, then the least value of (1)/...

If `x+y+z=1`, then the least value of `(1)/(x)+(1)/(y)+(1)/(z)`, is

A

3

B

9

C

27

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) given that \( x + y + z = 1 \), we can use the concept of inequalities, specifically the relationship between the arithmetic mean and harmonic mean. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to minimize the expression \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) under the constraint \( x + y + z = 1 \). 2. **Using the Arithmetic Mean-Harmonic Mean Inequality (AM-HM Inequality)**: According to the AM-HM inequality, for any positive numbers \( a, b, c \): \[ \text{AM} \geq \text{HM} \] where \[ \text{AM} = \frac{a + b + c}{3} \quad \text{and} \quad \text{HM} = \frac{3}{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}} \] 3. **Applying AM-HM to Our Expression**: Let \( a = x, b = y, c = z \). Then we have: \[ \frac{x + y + z}{3} \geq \frac{3}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \] 4. **Substituting the Constraint**: Since \( x + y + z = 1 \): \[ \frac{1}{3} \geq \frac{3}{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}} \] 5. **Rearranging the Inequality**: Cross-multiplying gives: \[ \frac{1}{3} \left( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right) \geq 3 \] Thus, \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 9 \] 6. **Conclusion**: The least value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) is \( 9 \). ### Final Answer: The least value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) is \( 9 \). ---

To find the least value of \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) given that \( x + y + z = 1 \), we can use the concept of inequalities, specifically the relationship between the arithmetic mean and harmonic mean. ### Step-by-Step Solution: 1. **Understanding the Problem**: We need to minimize the expression \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \) under the constraint \( x + y + z = 1 \). 2. **Using the Arithmetic Mean-Harmonic Mean Inequality (AM-HM Inequality)**: According to the AM-HM inequality, for any positive numbers \( a, b, c \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are non-negative real numbers satisfying x+y+z=1 , then the minimum value of ((1)/(x)+1)((1)/(y)+1)((1)/(z)+1) , is

If x,y,z be three positive numbers such that xyz^(2) has the greatest value (1)/(64) , then the value of (1)/(x)+(1)/(y)+(1)/(z) is

The value of x + y + z is 15 if a, x, y, z, b are in A.P. while the value of (1)/(x) + (1)/(y) + (1)/(z) + (1)/(z) is (5)/(3) if a, x, y, z, b are in H.P. the value of a and b are

If x+z=1,y+z=1,x+y=4 then the value of y is

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

If x,y,z are positive real number, such that x+y+z=1 , if the minimum value of (1+1/x)(1+1/y)(1+1/z) is K^(2) , then |K| is ……….

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If (x_(0), y_(0), z_(0)) is any solution of the system of equations 2x-y-z=1, -x-y+2z=1 and x-2y+z=2 , then the value of (x_(0)^(2)-y_(0)^(2)+1)/(z_(0)) (where, z_(0) ne 0 ) is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. For all positive values of x and y, the value of ((1+x+x^(2))(1+y+y^...

    Text Solution

    |

  2. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  3. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  4. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  5. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  6. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  7. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  8. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  9. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  10. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  11. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  12. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  13. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  14. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |

  15. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  16. about to only mathematics

    Text Solution

    |

  17. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |

  18. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  19. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  20. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |