Home
Class 11
MATHS
If x, y, z are non-negative real numbers...

If x, y, z are non-negative real numbers satisfying `x+y+z=1`, then the minimum value of `((1)/(x)+1)((1)/(y)+1)((1)/(z)+1)`, is

A

8

B

16

C

32

D

64

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(\left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right)\) given the constraint \(x + y + z = 1\) where \(x, y, z\) are non-negative real numbers, we can follow these steps: ### Step 1: Rewrite the Expression We can rewrite the expression as: \[ \left(\frac{1}{x} + 1\right) = \frac{1 + x}{x} = \frac{1}{x} + 1 \] Thus, the expression becomes: \[ \left(\frac{1 + x}{x}\right)\left(\frac{1 + y}{y}\right)\left(\frac{1 + z}{z}\right) \] ### Step 2: Apply the AM-HM Inequality Using the Arithmetic Mean - Harmonic Mean (AM-HM) inequality, we know: \[ \frac{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}{3} \geq \frac{3}{x + y + z} \] Since \(x + y + z = 1\), we have: \[ \frac{\frac{1}{x} + \frac{1}{y} + \frac{1}{z}}{3} \geq 3 \] This implies: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} \geq 9 \] ### Step 3: Substitute Back into the Expression Now substituting this back into our expression: \[ \left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right) = \left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right) \] Expanding this, we have: \[ \left(\frac{1}{x} + 1\right) = \frac{1 + x}{x}, \quad \left(\frac{1}{y} + 1\right) = \frac{1 + y}{y}, \quad \left(\frac{1}{z} + 1\right) = \frac{1 + z}{z} \] The product becomes: \[ \frac{(1 + x)(1 + y)(1 + z)}{xyz} \] ### Step 4: Use the Constraint Since \(x + y + z = 1\), we can express \(1 + x + y + z = 2\). Therefore: \[ (1 + x)(1 + y)(1 + z) = 2 + (x + y + z) + (xy + xz + yz) = 2 + 1 + (xy + xz + yz) = 3 + (xy + xz + yz) \] ### Step 5: Apply AM-GM Inequality Using the AM-GM inequality on \(xyz\): \[ \frac{x + y + z}{3} \geq \sqrt[3]{xyz} \Rightarrow 1 \geq 3\sqrt[3]{xyz} \Rightarrow xyz \leq \frac{1}{27} \] ### Step 6: Calculate the Minimum Value Now substituting the minimum values we found: \[ \left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right) \geq \frac{(3 + 1)^3}{xyz} \geq \frac{64}{\frac{1}{27}} = 64 \] ### Conclusion Thus, the minimum value of \(\left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right)\) is **64**.

To find the minimum value of the expression \(\left(\frac{1}{x} + 1\right)\left(\frac{1}{y} + 1\right)\left(\frac{1}{z} + 1\right)\) given the constraint \(x + y + z = 1\) where \(x, y, z\) are non-negative real numbers, we can follow these steps: ### Step 1: Rewrite the Expression We can rewrite the expression as: \[ \left(\frac{1}{x} + 1\right) = \frac{1 + x}{x} = \frac{1}{x} + 1 \] Thus, the expression becomes: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=1 , then the least value of (1)/(x)+(1)/(y)+(1)/(z) , is

If x,y,z are positive real number, such that x+y+z=1 , if the minimum value of (1+1/x)(1+1/y)(1+1/z) is K^(2) , then |K| is ……….

If x+z=1,y+z=1,x+y=4 then the value of y is

If x,y,z be three positive numbers such that xyz^(2) has the greatest value (1)/(64) , then the value of (1)/(x)+(1)/(y)+(1)/(z) is

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

x,y,z are distinct real numbers such that x+1/y = y + 1/z =z + 1/x The value of x^(2)y^(2)z^(2) is………..

If x, y, z are distinct positive real numbers is A.P. then (1)/(sqrt(x)+sqrt(y)), (1)/(sqrt(z)+sqrt(x)), (1)/(sqrt(y)+sqrt(z)) are in

If xyz = 1 and x, y, z gt 0 then the minimum value of the expression (x+2y)(y+2z)(z+2x) is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a, b, c are three distinct positive real numbers, then the least va...

    Text Solution

    |

  2. If x+y+z=1, then the least value of (1)/(x)+(1)/(y)+(1)/(z), is

    Text Solution

    |

  3. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  4. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  5. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  6. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  7. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  8. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  9. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  10. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  11. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  12. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  13. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |

  14. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  15. about to only mathematics

    Text Solution

    |

  16. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |

  17. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  18. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  19. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  20. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |