Home
Class 11
MATHS
For any positive real number a and for a...

For any positive real number a and for any `n in N`, the greatest value of `(a^(n))/(1+a+a^(2)+…+a^(2n))`, is

A

`(1)/(2n)`

B

`(1)/(2n+1)`

C

`(1)/(2n-1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the greatest value of the expression \( \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} \) for any positive real number \( a \) and for any \( n \in \mathbb{N} \), we can follow these steps: ### Step 1: Rewrite the Denominator The denominator \( 1 + a + a^2 + \ldots + a^{2n} \) is a geometric series. The sum of a geometric series can be calculated using the formula: \[ S = \frac{a^m - 1}{a - 1} \text{ for } a \neq 1 \] where \( m \) is the number of terms. Here, we have \( 2n + 1 \) terms, so: \[ 1 + a + a^2 + \ldots + a^{2n} = \frac{a^{2n+1} - 1}{a - 1} \text{ for } a \neq 1 \] ### Step 2: Substitute into the Expression Now substitute this back into the expression: \[ \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} = \frac{a^n}{\frac{a^{2n+1} - 1}{a - 1}} = \frac{a^n (a - 1)}{a^{2n+1} - 1} \] ### Step 3: Analyze the Expression To find the maximum value, we can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality. The AM-GM inequality states that the arithmetic mean of non-negative numbers is greater than or equal to their geometric mean. ### Step 4: Apply AM-GM Inequality We can express \( 1 + a + a^2 + \ldots + a^{2n} \) in terms of AM-GM: \[ \frac{1 + a + a^2 + \ldots + a^{2n}}{2n + 1} \geq \sqrt[2n + 1]{1 \cdot a \cdot a^2 \cdots a^{2n}} = \sqrt[2n + 1]{a^{1 + 2 + \ldots + 2n}} = \sqrt[2n + 1]{a^{n(2n + 1)}} \] Thus, we have: \[ \frac{1 + a + a^2 + \ldots + a^{2n}}{2n + 1} \geq a^n \] ### Step 5: Rearranging the Inequality Rearranging gives: \[ 1 + a + a^2 + \ldots + a^{2n} \geq (2n + 1) a^n \] Thus: \[ \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} \leq \frac{a^n}{(2n + 1)a^n} = \frac{1}{2n + 1} \] ### Step 6: Conclusion The greatest value of the expression \( \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} \) is therefore: \[ \frac{1}{2n + 1} \] ### Final Answer The greatest value of \( \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} \) is \( \frac{1}{2n + 1} \).

To find the greatest value of the expression \( \frac{a^n}{1 + a + a^2 + \ldots + a^{2n}} \) for any positive real number \( a \) and for any \( n \in \mathbb{N} \), we can follow these steps: ### Step 1: Rewrite the Denominator The denominator \( 1 + a + a^2 + \ldots + a^{2n} \) is a geometric series. The sum of a geometric series can be calculated using the formula: \[ S = \frac{a^m - 1}{a - 1} \text{ for } a \neq 1 \] where \( m \) is the number of terms. Here, we have \( 2n + 1 \) terms, so: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x and y are positive real numbers and m, n are any positive integers, then prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt 1/4

If x,y are positive real numbers and m, n are positive integers, then prove that (x^(n) y^(m))/((1 + x^(2n))(1 + y^(2m))) le (1)/(4)

If a and b are the greatest values of ""^(2n)C_(r)and""^(2n-1)C_(r) respectively. Then,

If n is any integer, then the value of (-sqrt(-1))^(4n+3)

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

If a_1,a_2, ,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2++a_(n-1)+2a_n is a_(n-1)+2a_n is b. (n+1)c^(1//n) 2n c^(1//n) (n+1)(2c)^(1//n)

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :

If a_1,a_2,a_3,....a_n are positive real numbers whose product is a fixed number c, then the minimum value of a_1+a_2+....+a_(n-1)+3a_n is

If a_1,a_2,------ ,a_n are positive real numbers whose product is a fixed number c , then the minimum value of a_1+a_2+---+a_(n-1)...........+2a_n is a. a_(n-1)+2a_n is b. (n+1)c^(1//n) c. 2n c^(1//n) d. (n+1)(2c)^(1//n)

For any natural number n, theb value of rArr int_(0)^(n^(2))[ sqrt(x)]dx, is

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If x, y, z are non-negative real numbers satisfying x+y+z=1, then the ...

    Text Solution

    |

  2. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  3. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  4. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  5. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  6. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  7. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  8. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  9. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  10. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  11. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |

  12. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  13. about to only mathematics

    Text Solution

    |

  14. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |

  15. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  16. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  17. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  18. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |

  19. Let a(1),a(2)…,a(n) be a non-negative real numbers such that a(1)+a(2)...

    Text Solution

    |

  20. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |