Home
Class 11
MATHS
If a+b+c=6 then the maximum value of sqr...

If `a+b+c=6` then the maximum value of `sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=`

A

9

B

6

C

4

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} \) given the constraint \( a + b + c = 6 \), we can follow these steps: ### Step 1: Express the terms in a simpler form We start with the expression: \[ \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} \] We can rewrite each term: \[ \sqrt{4a+1} = \sqrt{4a} + \sqrt{1} = 2\sqrt{a} + 1 \] Thus, we can express the entire sum as: \[ \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} = (2\sqrt{a} + 1) + (2\sqrt{b} + 1) + (2\sqrt{c} + 1) \] This simplifies to: \[ 2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + 3 \] ### Step 2: Use the Cauchy-Schwarz inequality To maximize \( \sqrt{a} + \sqrt{b} + \sqrt{c} \), we apply the Cauchy-Schwarz inequality: \[ (\sqrt{a} + \sqrt{b} + \sqrt{c})^2 \leq (1 + 1 + 1)(a + b + c) \] Substituting \( a + b + c = 6 \): \[ (\sqrt{a} + \sqrt{b} + \sqrt{c})^2 \leq 3 \times 6 = 18 \] Taking the square root of both sides gives: \[ \sqrt{a} + \sqrt{b} + \sqrt{c} \leq \sqrt{18} = 3\sqrt{2} \] ### Step 3: Substitute back to find the maximum value Now substituting back into our expression: \[ 2(\sqrt{a} + \sqrt{b} + \sqrt{c}) + 3 \leq 2(3\sqrt{2}) + 3 = 6\sqrt{2} + 3 \] ### Step 4: Find the maximum achievable value To achieve equality in the Cauchy-Schwarz inequality, \( a, b, c \) must be equal. Therefore, let: \[ a = b = c = 2 \] Then: \[ \sqrt{4a + 1} = \sqrt{4(2) + 1} = \sqrt{9} = 3 \] Thus: \[ \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} = 3 + 3 + 3 = 9 \] ### Conclusion The maximum value of \( \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} \) given \( a + b + c = 6 \) is: \[ \boxed{9} \]

To find the maximum value of \( \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} \) given the constraint \( a + b + c = 6 \), we can follow these steps: ### Step 1: Express the terms in a simpler form We start with the expression: \[ \sqrt{4a+1} + \sqrt{4b+1} + \sqrt{4c+1} \] We can rewrite each term: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a/sqrt(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (c) (-1,2) (d) (-1,1)

If a/(b c)-2=sqrt(b/c)+sqrt(c/b), where a , b , c >0, then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point given by (a) (1,1) (b) (1,-2) (-1,2) (d) (-1,1)

Suppose a ,b, and c are in A.P. and a^2, b^2 and c^2 are in G.P. If a

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

If t a ntheta=-1/(sqrt(5)) and theta lies in the IV quadrant, then the value of costheta is a. (sqrt(5))/(sqrt(6)) b. 2/(sqrt(6)) c. 1/2 d. 1/(sqrt(6))

If alpha, betaepsilon(0, pi/2) and if sin^4alpha+4cos^4beta+2=4sqrt2 sinalphacosbeta then the value of cos(alpha+beta)-cos(alpha-beta) is (A) sqrt2 (B) 1/sqrt2 (C) -1/sqrt2 (D) -sqrt2

If sin^-1(1/3)+sin^-1 (2/3)= sin^-1 x then x is equal to (A) (4+sqrt(5)/9 (B) (4sqrt(2)+sqrt(5)/9 (C) (sqrt(3)+1)/6 (D) 1

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) , then the possible value of tan theta is (a) 4/3 (b) 0 (c) -3/4 (d) -4/3

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a, b and c are positive real numbers such that aleblec, then (a^(2)...

    Text Solution

    |

  2. For any positive real number a and for any n in N, the greatest value ...

    Text Solution

    |

  3. If a+b+c=6 then the maximum value of sqrt(4a+1)+sqrt(4b+1)+sqrt(4c+1)=

    Text Solution

    |

  4. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  5. The least value of 2log100 a-loga 0.0001 , a >1

    Text Solution

    |

  6. If a, b and c are positive, then the minimum value of a^(log b- logc) ...

    Text Solution

    |

  7. If a, b, c in R, then which one of the following is true:

    Text Solution

    |

  8. If a(1), a(2),….,a(n) are n(gt1) real numbers, then

    Text Solution

    |

  9. If 0ltxlt(pi)/(2), then the minimum value of (sinx+cosx+cosec2x),is

    Text Solution

    |

  10. If x in R " and "alpha=(x^(2))/(1+x^(4)), then alpha lies in the inter...

    Text Solution

    |

  11. If the equation x^(4)-4x^(3)+ax^(2)+bx+1=0 has four positive roots, f...

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |

  14. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  15. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  16. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  17. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |

  18. Let a(1),a(2)…,a(n) be a non-negative real numbers such that a(1)+a(2)...

    Text Solution

    |

  19. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |

  20. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |