Home
Class 11
MATHS
If a+b+c=1 and a, b, c are positive real...

If `a+b+c=1` and a, b, c are positive real numbers such that
`(1-a)(1-b)(1-c)gelambda" abc, then "lambda`=

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \lambda \) given the conditions \( a + b + c = 1 \) and \( (1-a)(1-b)(1-c) \geq \lambda abc \) where \( a, b, c \) are positive real numbers. ### Step-by-step Solution: 1. **Use the condition \( a + b + c = 1 \)**: Since \( a + b + c = 1 \), we can express \( 1 - a \), \( 1 - b \), and \( 1 - c \) as: \[ 1 - a = b + c, \quad 1 - b = a + c, \quad 1 - c = a + b \] 2. **Substitute into the inequality**: We need to analyze the expression \( (1-a)(1-b)(1-c) \): \[ (1-a)(1-b)(1-c) = (b+c)(a+c)(a+b) \] 3. **Apply the AM-GM inequality**: We can apply the Arithmetic Mean-Geometric Mean (AM-GM) inequality to each pair: \[ \frac{a+b}{2} \geq \sqrt{ab} \implies a+b \geq 2\sqrt{ab} \] \[ \frac{b+c}{2} \geq \sqrt{bc} \implies b+c \geq 2\sqrt{bc} \] \[ \frac{c+a}{2} \geq \sqrt{ca} \implies c+a \geq 2\sqrt{ca} \] 4. **Multiply the inequalities**: Multiplying the three inequalities gives: \[ (a+b)(b+c)(c+a) \geq (2\sqrt{ab})(2\sqrt{bc})(2\sqrt{ca}) = 8\sqrt{(abc)^2} = 8abc \] 5. **Relate it back to the original inequality**: From our earlier substitution, we have: \[ (1-a)(1-b)(1-c) = (b+c)(a+c)(a+b) \geq 8abc \] Thus, we can conclude: \[ (1-a)(1-b)(1-c) \geq 8abc \] 6. **Identify the value of \( \lambda \)**: From the inequality \( (1-a)(1-b)(1-c) \geq \lambda abc \), we see that the maximum value of \( \lambda \) that satisfies this inequality is: \[ \lambda = 8 \] ### Final Answer: \[ \lambda = 8 \]

To solve the problem, we need to find the value of \( \lambda \) given the conditions \( a + b + c = 1 \) and \( (1-a)(1-b)(1-c) \geq \lambda abc \) where \( a, b, c \) are positive real numbers. ### Step-by-step Solution: 1. **Use the condition \( a + b + c = 1 \)**: Since \( a + b + c = 1 \), we can express \( 1 - a \), \( 1 - b \), and \( 1 - c \) as: \[ 1 - a = b + c, \quad 1 - b = a + c, \quad 1 - c = a + b ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are positive real numbers such that a+b+c=1 , then the greatest value of (1-a)(1-b)(1-c), is

If a, b, c are positive real number such that lamba abc is the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) , then lambda =

If a, b, c are positive real numbers, then the least value of (a+b+c)((1)/(a)+(1)/(b)+(1)/( c )) , is

If a, b, c are distinct positive real numbers such that a+(1)/(b)=4,b+(1)/( c )=1,c+(1)/(d)=4 and d+(1)/(a)=1 , then

If a , b , c , are positive real numbers, then prove that (2004, 4M) {(1+a)(1+b)(1+c)}^7>7^7a^4b^4c^4

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a, b, c are positive real numbers then show that (i) (a + b + c) ((1)/(a) + (1)/(b) +(1)/(c)) ge 9 (ii) (b+c)/(a) +(c +a)/(b) + (a+b)/(c) ge 6

If a,b,c and d are four positive real numbers such that abcd=1 , what is the minimum value of (1+a)(1+b)(1+c)(1+d) .

If a,b,c are different positive real numbers such that b+c−a,c+a−b and a+b−c are positive, then (b+c−a)(c+a−b)(a+b−c)−abc is a. positive b. negative c. non-positive d. non-negative

Let a ,b ,a n dc be distinct nonzero real numbers such that (1-a^3)/a=(1-b^3)/b=(1-c^3)/c dot The value of (a^3+b^3+c^3) is _____________.

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a(i)in(-pi,2pi)" for "i=2,3,...,n, then the number of solutions of ...

    Text Solution

    |

  2. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  3. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  4. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  5. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |

  6. Let a(1),a(2)…,a(n) be a non-negative real numbers such that a(1)+a(2)...

    Text Solution

    |

  7. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |

  8. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  9. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  10. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  11. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  12. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  13. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  14. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  15. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  16. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  17. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  18. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  19. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  20. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |