Home
Class 11
MATHS
If a,b,c are positive real numbers such ...

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of `a^2b^3c^4`

A

`2^(19)xx3^(2)`

B

`2^(19)xx3^(3)`

C

`2^(18)xx3^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( a^2b^3c^4 \) given that \( a + b + c = 18 \) and \( a, b, c \) are positive real numbers, we can use the method of inequalities, specifically the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Set Up the Problem**: We know that \( a + b + c = 18 \). We want to maximize the expression \( a^2b^3c^4 \). 2. **Apply AM-GM Inequality**: The AM-GM inequality states that for any non-negative numbers \( x_1, x_2, \ldots, x_n \): \[ \frac{x_1 + x_2 + \ldots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \ldots x_n} \] In our case, we can express \( a, b, c \) in terms of their contributions to the product \( a^2b^3c^4 \). We will divide \( a \) into 2 parts, \( b \) into 3 parts, and \( c \) into 4 parts. 3. **Rewrite the Terms**: We can rewrite the sum \( a + b + c \) as: \[ \frac{a/2 + a/2 + b/3 + b/3 + b/3 + c/4 + c/4 + c/4 + c/4}{9} \geq \sqrt[9]{\left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^3 \left(\frac{c}{4}\right)^4} \] 4. **Calculate the Left Side**: Since \( a + b + c = 18 \), we have: \[ \frac{18}{9} = 2 \] 5. **Set Up the Inequality**: Thus, we can write: \[ 2 \geq \sqrt[9]{\left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^3 \left(\frac{c}{4}\right)^4} \] 6. **Raise Both Sides to the Power of 9**: \[ 2^9 \geq \left(\frac{a}{2}\right)^2 \left(\frac{b}{3}\right)^3 \left(\frac{c}{4}\right)^4 \] 7. **Simplify the Right Side**: \[ 512 \geq \frac{a^2 b^3 c^4}{2^2 \cdot 3^3 \cdot 4^4} \] 8. **Calculate the Denominator**: \[ 2^2 = 4, \quad 3^3 = 27, \quad 4^4 = 256 \] Thus, \[ 2^2 \cdot 3^3 \cdot 4^4 = 4 \cdot 27 \cdot 256 = 27648 \] 9. **Final Inequality**: \[ 512 \cdot 27648 \geq a^2 b^3 c^4 \] 10. **Calculate the Maximum Value**: \[ a^2 b^3 c^4 \leq 512 \cdot 27648 \] 11. **Compute the Product**: \[ 512 \cdot 27648 = 14155776 \] Thus, the maximum value of \( a^2b^3c^4 \) given the constraint \( a + b + c = 18 \) is \( 14155776 \).

To find the maximum value of \( a^2b^3c^4 \) given that \( a + b + c = 18 \) and \( a, b, c \) are positive real numbers, we can use the method of inequalities, specifically the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Set Up the Problem**: We know that \( a + b + c = 18 \). We want to maximize the expression \( a^2b^3c^4 \). 2. **Apply AM-GM Inequality**: The AM-GM inequality states that for any non-negative numbers \( x_1, x_2, \ldots, x_n \): ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are positive real number such that lamba abc is the minimum value of a(b^(2)+c^(2))+b(c^(2)+a^(2))+c(a^(2)+b^(2)) , then lambda =

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a,b,c are distinct positive real numbers, then

If a, b, c are positive real numbers such that a+b+c=1 , then the greatest value of (1-a)(1-b)(1-c), is

If a and b are positive real numbers such that a+b =c, then the minimum value of ((4 )/(a)+ (1)/(b)) is equal to :

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

If three positive real numbers a,b ,c are in A.P such that a b c=4 , then the minimum value of b is a) 2^(1//3) b) 2^(2//3) c) 2^(1//2) d) 2^(3//23)

Let a ,b and c be real numbers such that a+2b+c=4 . Find the maximum value of (a b+b c+c a)dot

If a, b, c are positive real numbers such that a + b + c = 1 , then prove that a/(b + c)+b/(c+a) + c/(a+b) >= 3/2

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If x,y,z be three positive numbers such that xyz^(2) has the greatest ...

    Text Solution

    |

  2. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  3. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  4. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |

  5. Let a(1),a(2)…,a(n) be a non-negative real numbers such that a(1)+a(2)...

    Text Solution

    |

  6. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |

  7. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  8. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  9. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  10. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  11. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  12. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  13. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  14. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  15. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  16. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  17. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  18. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  19. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  20. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |