Home
Class 11
MATHS
If x, y, z are positive real numbers suc...

If x, y, z are positive real numbers such that `x^(3)y^(2)z^(4)=7`, then the least value of `2x+5y+3z`, is

A

`((525)/(128))^(1//9)`

B

`3((525)/(128))^(1//9)`

C

`9((525)/(128))^(1//9)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of \(2x + 5y + 3z\) given the constraint \(x^3 y^2 z^4 = 7\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Set up the AM-GM inequality**: We need to express \(2x + 5y + 3z\) in a way that allows us to apply AM-GM. We can break down the terms based on their coefficients: \[ 2x = \frac{2x}{3} + \frac{2x}{3} + \frac{2x}{3} \] \[ 5y = \frac{5y}{2} + \frac{5y}{2} \] \[ 3z = \frac{3z}{4} + \frac{3z}{4} + \frac{3z}{4} + \frac{3z}{4} \] This gives us a total of 9 terms: \[ \frac{2x}{3}, \frac{2x}{3}, \frac{2x}{3}, \frac{5y}{2}, \frac{5y}{2}, \frac{3z}{4}, \frac{3z}{4}, \frac{3z}{4}, \frac{3z}{4} \] 2. **Apply AM-GM**: By AM-GM, we have: \[ \frac{\frac{2x}{3} + \frac{2x}{3} + \frac{2x}{3} + \frac{5y}{2} + \frac{5y}{2} + \frac{3z}{4} + \frac{3z}{4} + \frac{3z}{4} + \frac{3z}{4}}{9} \geq \sqrt[9]{\left(\frac{2x}{3}\right)^3 \left(\frac{5y}{2}\right)^2 \left(\frac{3z}{4}\right)^4} \] 3. **Simplify the left-hand side**: The left-hand side simplifies to: \[ \frac{2x + 5y + 3z}{9} \] 4. **Calculate the geometric mean**: The right-hand side becomes: \[ \sqrt[9]{\left(\frac{2x}{3}\right)^3 \left(\frac{5y}{2}\right)^2 \left(\frac{3z}{4}\right)^4} = \sqrt[9]{\frac{2^3 x^3 \cdot 5^2 y^2 \cdot 3^4 z^4}{3^3 \cdot 2^2 \cdot 4^4}} \] 5. **Substitute the constraint**: Since \(x^3 y^2 z^4 = 7\), we substitute this into our expression: \[ \sqrt[9]{\frac{2^3 \cdot 5^2 \cdot 3^4 \cdot 7}{3^3 \cdot 2^2 \cdot 4^4}} \] 6. **Calculate the constants**: Simplifying the constants: \[ 4^4 = (2^2)^4 = 2^8 \] Thus, we have: \[ \frac{2^3 \cdot 5^2 \cdot 3^4 \cdot 7}{3^3 \cdot 2^2 \cdot 2^8} = \frac{2^{3-2-8} \cdot 5^2 \cdot 3^4 \cdot 7}{3^3} = \frac{2^{-7} \cdot 25 \cdot 81 \cdot 7}{27} \] 7. **Final calculation**: Now, we can find the minimum value of \(2x + 5y + 3z\): \[ 2x + 5y + 3z \geq 9 \cdot \sqrt[9]{\frac{2^{-7} \cdot 25 \cdot 81 \cdot 7}{27}} \] 8. **Calculate the minimum value**: After calculating the above expression, we find that the minimum value of \(2x + 5y + 3z\) is: \[ \text{Minimum value} = 9 \cdot \sqrt[9]{\frac{525}{128}} = 9 \cdot \frac{525^{1/9}}{2^{7/9}} \] ### Final Result: The least value of \(2x + 5y + 3z\) is approximately \( \text{value} \).

To find the least value of \(2x + 5y + 3z\) given the constraint \(x^3 y^2 z^4 = 7\), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-step Solution: 1. **Set up the AM-GM inequality**: We need to express \(2x + 5y + 3z\) in a way that allows us to apply AM-GM. We can break down the terms based on their coefficients: \[ 2x = \frac{2x}{3} + \frac{2x}{3} + \frac{2x}{3} ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If x, y, z are positive real numbers such that x+y+z=a, then

If x and y are positive real numbers such that x^(2)y^(3)=32 then the least value of 2x+3y is

If x. y, z are positive real numbers such that x^2+y^2+z^2=27, then x^3+y^3+z^3 has

If x,y,z are positive real numbers such that x^(2)+y^(2)+Z^(2)=7 and xy+yz+xz=4 then the minimum value of xy is

Let x,y,z be positive real numbers such that log_(2x)z=3, log_(5y)z=6 and log_(xy)z=2/3 then the value of z is

If x,y and z are three real numbers such that x+y+z=4 and x^2+y^2+z^2=6 ,then show that each of x,y and z lie in the closed interval [2/3,2]

If x,y,z are three real numbers such that x+ y +z =4 and x^(2) + y^(2) +z^(2) =6 ,then (1) 2/3 le x,y,z le 2 (2) 0 le x,y,z le 2 (3) 1 le x,y,z le 3 (4) 2 le x,y,z le 3

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

The x , y , z are positive real numbers such that (log)_(2x)z=3,(log)_(5y)z=6,a n d(log)_(x y)z=2/3, then the value of (1/(2z)) is ............

Given that x ,y ,z are positive real such that x y z=32. If the minimum value of x^2+4x y+4y^2+2z^2 is equal m , then the value of m//16 is.

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a+b+c=1 and a, b, c are positive real numbers such that (1-a)(1-b...

    Text Solution

    |

  2. If a,b,c are positive real numbers such that a + b +c=18, find the max...

    Text Solution

    |

  3. If x, y, z are positive real numbers such that x^(3)y^(2)z^(4)=7, then...

    Text Solution

    |

  4. Let a(1),a(2)…,a(n) be a non-negative real numbers such that a(1)+a(2)...

    Text Solution

    |

  5. If a ,b ,c ,d are positive real umbers such that a=b+c+d=2,t h e nM=(a...

    Text Solution

    |

  6. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  7. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  8. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  9. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  10. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  11. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  12. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  13. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  14. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  15. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  16. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  17. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  18. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  19. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  20. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |