Home
Class 11
MATHS
For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx)...

For `0ltxlt(pi)/(2), (1+4cosecx)(1+8secx)`, is

A

`ge81`

B

`gt81`

C

`gt83`

D

`ge83`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( (1 + 4 \csc x)(1 + 8 \sec x) \) for \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the expressions We start by rewriting the cosecant and secant functions in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the expression as: \[ (1 + 4 \csc x)(1 + 8 \sec x) = \left(1 + \frac{4}{\sin x}\right)\left(1 + \frac{8}{\cos x}\right) \] ### Step 2: Simplify the expression Now, we can expand the expression: \[ = 1 + \frac{4}{\sin x} + \frac{8}{\cos x} + \frac{32}{\sin x \cos x} \] ### Step 3: Combine terms We can combine the terms into a single fraction: \[ = \frac{\sin x \cos x + 4 \cos x + 8 \sin x + 32}{\sin x \cos x} \] ### Step 4: Use the identity for sine and cosine Recall the identity \( 2 \sin x \cos x = \sin 2x \): \[ = \frac{2 \sin x \cos x + 8 \sin x + 4 \cos x + 32}{\sin x \cos x} \] ### Step 5: Find the maximum of the denominator To minimize the entire expression, we need to maximize the denominator \( \sin x \cos x \). The maximum value occurs at \( x = \frac{\pi}{4} \): \[ \sin x \cos x = \frac{1}{2} \quad \text{when } x = \frac{\pi}{4} \] ### Step 6: Substitute \( x = \frac{\pi}{4} \) Now, substituting \( x = \frac{\pi}{4} \): \[ \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}} \quad \text{and} \quad \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}} \] Thus, \[ = \frac{2 \cdot \frac{1}{2} + 8 \cdot \frac{1}{\sqrt{2}} + 4 \cdot \frac{1}{\sqrt{2}} + 32}{\frac{1}{2}} \] \[ = \frac{1 + 8\sqrt{2} + 4\sqrt{2} + 32}{\frac{1}{2}} \] \[ = 2(1 + 12\sqrt{2} + 32) \] \[ = 2(33 + 12\sqrt{2}) \] ### Step 7: Calculate the value Now we can calculate the approximate value: \[ = 66 + 24\sqrt{2} \] Using \( \sqrt{2} \approx 1.414 \): \[ = 66 + 24 \times 1.414 \approx 66 + 33.936 \approx 99.936 \] ### Conclusion Thus, the value of \( (1 + 4 \csc x)(1 + 8 \sec x) \) is approximately \( 99.936 \), which is greater than 81.

To solve the inequality \( (1 + 4 \csc x)(1 + 8 \sec x) \) for \( 0 < x < \frac{\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the expressions We start by rewriting the cosecant and secant functions in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \sec x = \frac{1}{\cos x} \] Thus, we can rewrite the expression as: ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

For 0ltxlt(pi)/(2) ,prove that x gt sin x

Let the domain and range of inverse circular functions are defined as follows: If xepsilon((-pi)/2,(pi)/2), cosec^(-1)cosecx is

int_((pi)/4)^((pi)/2)(2cosecx)^17 dx

int_0^(pi/3) (secx tanx)/(1+sec^2x)dx

The value of the definite integral int_0^(pi/2) (dx)/(tanx+cotx+cosecx+secx) is

The integral overset(pi//2)underset(pi//4)int (2 cosecx)^(17)dx is equal to

The value of lim_(xrarr2pi)(1-(secx)^(secx))/(ln(secx)) is equal to

int_(0)^(pi/3)(x)/(1+secx)dx

int((2+secx)secx)/((1+2secx)^2)dx=

The number of distinct real roots of |{:(cosec x, secx, secx), (secx, cosecx, secx), (secx, secx, cosecx):}|=0 lies in the interval -pi/4lt=xlt=pi/4 is (a) 1 (b) 2 (c) 3 (d) 0

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |