Home
Class 11
MATHS
If a, b, c are distinct positive integer...

If a, b, c are distinct positive integers such that `ab+bc+cage74`, then the minimum value of `a^(3)+b^(3)+c^(3)-3abc,` is

A

42

B

46

C

45

D

48

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the minimum value of the expression \( a^3 + b^3 + c^3 - 3abc \) given that \( ab + bc + ca \geq 74 \) and \( a, b, c \) are distinct positive integers. ### Step 1: Understand the Expression The expression \( a^3 + b^3 + c^3 - 3abc \) can be rewritten using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This means we need to minimize \( (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \). ### Step 2: Choose Distinct Positive Integers Since \( a, b, c \) must be distinct positive integers, we can start by choosing small values for \( a, b, c \). Let's try \( a = 4, b = 5, c = 6 \). ### Step 3: Check the Condition Now we need to check if these values satisfy the condition \( ab + bc + ca \geq 74 \): \[ ab = 4 \times 5 = 20 \] \[ bc = 5 \times 6 = 30 \] \[ ca = 6 \times 4 = 24 \] Now, sum these values: \[ ab + bc + ca = 20 + 30 + 24 = 74 \] This satisfies the condition \( ab + bc + ca \geq 74 \). ### Step 4: Calculate the Expression Now we calculate \( a^3 + b^3 + c^3 - 3abc \): \[ a^3 = 4^3 = 64 \] \[ b^3 = 5^3 = 125 \] \[ c^3 = 6^3 = 216 \] Now sum these: \[ a^3 + b^3 + c^3 = 64 + 125 + 216 = 405 \] Next, calculate \( 3abc \): \[ abc = 4 \times 5 \times 6 = 120 \] So, \[ 3abc = 3 \times 120 = 360 \] Now, substitute these values into the expression: \[ a^3 + b^3 + c^3 - 3abc = 405 - 360 = 45 \] ### Conclusion Thus, the minimum value of \( a^3 + b^3 + c^3 - 3abc \) given the condition is \( \boxed{45} \).

To solve the problem, we need to find the minimum value of the expression \( a^3 + b^3 + c^3 - 3abc \) given that \( ab + bc + ca \geq 74 \) and \( a, b, c \) are distinct positive integers. ### Step 1: Understand the Expression The expression \( a^3 + b^3 + c^3 - 3abc \) can be rewritten using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] This means we need to minimize \( (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \). ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Mcqs|37 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise EXERCISE SECTION-II (Assertion-Reason )|1 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a ,\ b ,\ c are distinct positive prime integers such that a^2b^3c^4=49392 ,\ find the value of a ,\ b\ and c

If ab=2a + 3b, a>0, b>0, then the minimum value of ab is

Ifa, b, c are positive real number such that ab^(2)c^(3) = 64 then minimum value of ((1)/(a) + (2)/(b) + (3)/(c)) is equal to

When a=3,b=0, c=-2 find the value of : a^(3)+b^(3)+c^(3)-3abc

If a, b, c are three distinct positive real numbers, then the least value of ((1+a+a^(2))(1+b+b^(2))(1+c+c^(2)))/(abc) , is

If a and b are positive integers satisfying (a+3)^(2)+(b+1)^(2)=85 , what is the minimum value of (2a+b)?

If a, b, c are positive integers such that a^2+ 2b^2-2ab = 169 and 2bc - c^2= 169 then a + b + c is:

If a,b,c are three positive numbers then the minimum value of (a^(4)+b^(6)+c^(8))/((ab^(3)c^(2))2sqrt(2)) is equal to_____

If a, b, and c are the distinct positive integers, and 10% of abc is 5, then which of the following is a possible value of a+b?

Let a, b, c be positive numbers, then the minimum value of (a^4+b^4+c^2)/(abc)

OBJECTIVE RD SHARMA ENGLISH-INEQUALITIES -Section 1 - Solved Mcq
  1. If a-1,a2, ,an are positive real numbers whose product is a fixed num...

    Text Solution

    |

  2. If alpha in (0,pi/2),t h e nsqrt(x^2+x)+(tan^2alpha)/(sqrt(x^2+x)) is ...

    Text Solution

    |

  3. If a1,a2,a3,.......an, are 'n', distinct odd natural numbers, not divi...

    Text Solution

    |

  4. For any n positive numbers a(1),a(2),…,a(n) such that sum(i=1)^(n) a...

    Text Solution

    |

  5. If a, b, c denote the sides of a DeltaABC such that a^(2)+b^(2)-ab=c...

    Text Solution

    |

  6. For 0ltxlt(pi)/(2), (1+4cosecx)(1+8secx), is

    Text Solution

    |

  7. If a, b, c are distinct positive integers such that ab+bc+cage74, then...

    Text Solution

    |

  8. If a+b+c=1, the greatest value of (ab)/(a+b)+(bc)/(b+c)+(ca)/(c+a), ...

    Text Solution

    |

  9. If a, bgt0,a+b=1, then the least value of (1+(1)/(a))(1+(1)/(b)), is

    Text Solution

    |

  10. If a,b,c are positive numbers and a+b+=c1, then the maximum value of (...

    Text Solution

    |

  11. If a, b, c are sides of a triangle, then ((a+b+c)^(2))/(ab+bc+ca) alwa...

    Text Solution

    |

  12. A straight line through the vertex P of a triangle P Q R intersects th...

    Text Solution

    |

  13. The minimum value of the sum of real numbers a^-5, a^-4, 3a^-3, 1,a^8 ...

    Text Solution

    |

  14. Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

    Text Solution

    |

  15. If a, b and c are distinct positive numbers, then the expression (a + ...

    Text Solution

    |

  16. If x,yz are variables and 3tan x+4tany+5tanz=20, then the minimum...

    Text Solution

    |

  17. If agt0,bgt0,cgt0, then the minimum value of sqrt((4a)/(b))+root(3)(...

    Text Solution

    |

  18. If x+y+z=1, then the minimum value of xy(x+y)^(2)+yz(y+z)^(2)+zx(z+x)...

    Text Solution

    |

  19. If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

    Text Solution

    |

  20. Let x, y, z be positive real numbers such that x + y + z = 12 and x^3y...

    Text Solution

    |